Journal of Solution Chemistry

, Volume 18, Issue 9, pp 823–873 | Cite as

The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. solubilities of the noble gases

  • Daniel KrauseJr.
  • Bruce B. Benson


A method for the analysis of precise gas solubility data is presented and applied to new determinations of the Henry constant, k2, for He, Ne, Ar, Kr, and Xe. The values of k2 are fitted to the same sets of temperature functions which we have tried for oxygen. Our previously proposed power series in 1/T, ln(k2/P)=a0+a1/T+a2/T2 (Mark I), gives the best 3-term fit within the temperature range 0–60°C. For use over the full range to the critical temperature of water, we have discovered a new function given by (T*)2ln(k2/P)=A0(T*)2+A1(1-T*)1/3+A2(1-T*)2/3(Mark II), where T*≡T/T c1 . It fits our data from 0–60°C nearly as well as Mark I; it fits high temperature data from other sources; and at the critical temperature of water it satisfies theoretical requirements. Expansion of Mark II reveals the relationship between Mark II and Mark I and leads to a 4-term smoothing function, ln(k2/P)=a−2(T*)−2+a−1(T*)−1+a0+a1T* (Mark III), which we believe gives the best values only for the 0–60°C range. Mark III is used to calculate values for\(\Delta \bar G^\theta ,\Delta \bar H^\theta ,\Delta \bar S^\theta \), and\(\Delta \bar C^\theta \), 0–60°C, and a procedure is empolyed to estimate the errors. Agreement is excellent between these results and those obtained from precise microcalorimetric measurements made by others. With the inclusion of pressure correction terms, Mark II yields the four thermodynamic function changes for use at high temperatures. With increasing temperature, these changes suddenly turn upward toward plus infinity as T c1 is approached. Essentially direct determinations of\(\Delta \bar C^\theta \) for argon by other workers are in excellent agreement with our results. The symmetrical activity coefficient at infinite dilution, γ 2 ° is examined and the hypothetical properties of k2 are explored below 0°C. Mark II can be expressed in the reduced form (T*)2ln(k 2 * )=A1(1-T*)1/3+A2(1-T*)2/3, where k 2 * k2/(pc1φ2c1). A2 is a very good linear fit to A1, which suggests a characteristic temperature for water at 287.3 K.

Key words

Henry constant data analysis temperature dependence solution thermodynamics errors critical phenomena 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Benson, D. Krause, Jr., and M. A. Peterson,J. Solution Chem. 8, 655 (1979).Google Scholar
  2. 2.
    Water, A Comprehensive Treatise, F. Franks, ed., (Plenum Press, New York, 1972).Google Scholar
  3. 3.
    F. H. Stillinger,Science 209, 451 (1980).Google Scholar
  4. 4.
    B. B. Benson,Proceedings Symposium on Marine Geochemistry (University of Rhode Island, Providence, 1964).Google Scholar
  5. 5.
    R. H. Bieri, inThe Sea, E. D. Goldberg, ed., (John Wiley and Sons, New York, 1974), Chap. 6.Google Scholar
  6. 6.
    W. J. Jenkins,J. Marine Res. 38, 533 (1980).Google Scholar
  7. 7.
    J. S. Hovis, J. J. McKeown, D. Krause, Jr., and B. B. Benson, inGas Transfer at Water Surfaces, W. Brutsaert and G. H. Jirka, eds. (D. Reidel, Boston, 1984), pp. 403–411.Google Scholar
  8. 8.
    R. Battino and H. L. Clever,Chem. Rev. 66, 395 (1966).Google Scholar
  9. 9.
    E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77, 219 (1977).Google Scholar
  10. 10.
    T. R. Rettich, Y. P. Handa, R. Battino, and E. Wilhelm,J. Phys. Chem. 85, 3230 (1981).Google Scholar
  11. 11.
    B. B. Benson and D. Krause, Jr.J. Solution Chem. 18, 803 (1989).Google Scholar
  12. 12.
    T. Enns, P. F. Scholander, and E. D. Bradstreet,J. Phys. Chem. 69, 389 (1965).Google Scholar
  13. 13.
    J. C. Moore, R. Battino, T. R. Rettich, Y. P. Handa, and E. Wilhelm,J. Chem. Eng. Data 27, 22 (1982).Google Scholar
  14. 14.
    R. F. Weiss and T. K. Kyser,J. Chem. Eng. Data 23, 69 (1978).Google Scholar
  15. 15.
    W. L. Masterton,J. Chem. Phys. 22, 1830 (1954).Google Scholar
  16. 16.
    T. R. Rettich, R. Battino, and E. Wilhelm,J. Solution Chem. 13, 335 (1984).Google Scholar
  17. 17.
    W. A. Gerth,J. Solution Chem. 12, 655 (1983), and references therein.Google Scholar
  18. 18.
    J. M. H. L. Sengers, M. Klein, and J. S. Gallagher, inAmerican Institute of Physics Handbook, 3rd edn., D. E. Gray and M. W. Zemansky, eds., (McGraw-Hill. New York, 1972).Google Scholar
  19. 19.
    J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford, 1980).Google Scholar
  20. 20.
    J. P. O'Connell, Ph.D. Thesis, University of California, Berkeley, 1967.Google Scholar
  21. 21.
    B. B. Benson and D. Krause, Jr.,J. Chem. Phys. 64, 689 (1976).Google Scholar
  22. 22.
    S. Valentiner,Z. Phys. 42, 253 (1927).Google Scholar
  23. 23.
    E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).Google Scholar
  24. 24.
    E. F. Stephan, N. S. Hatfield, R. S. Peoples, and H. A. H. Pray, USAEC BMI-1067 (1956).Google Scholar
  25. 25.
    D. Beutier and H. Renon,AIChE J. 24, 1122 (1978).Google Scholar
  26. 26.
    W. Hayduk and H. Laudie,AIChE J. 19, 1233 (1973).Google Scholar
  27. 27.
    H. A. Pray, C. E. Schweickert, and B. H. Minnich,Ind. Eng. Chem. 44, 1146 (1952).Google Scholar
  28. 28.
    R. W. Potter II and M. A. Clynne,J. Solution Chem. 7, 837 (1978).Google Scholar
  29. 29.
    R. Crovetto, R. Fernandez-Prini, and M. L. Japas,J. Chem. Phys. 76, 1077 (1982).Google Scholar
  30. 30.
    J. T. Phillips, C. U. Linderstrom-Lang, and J. Bigeleisen,J. Chem. Phys. 56, 5053 (1972).Google Scholar
  31. 31.
    C. E. Klots and B. B. Benson,J. Marine Res. 21, 48 (1963).Google Scholar
  32. 32.
    A. Ben Naim and S. Baer,Trans. Faraday Soc. 59, 2735 (1963).Google Scholar
  33. 33.
    E. Douglas,J. Phys. Chem. 68, 169 (1964).Google Scholar
  34. 34.
    C. N. Murray and J. P. Riley,Deep-Sea Res. 17, 203 (1970).Google Scholar
  35. 35.
    R. F. Weiss,J. Chem. Eng. Data 16, 235 (1971).Google Scholar
  36. 36.
    P. F. Scholander,J. Biol. Chem. 167, 235 (1947).Google Scholar
  37. 37.
    G. Olofsson, A. A. Oshodi, E. Qvarnström, and I. Wadsö,J. Chem. Thermodyn. 16, 1041 (1984).Google Scholar
  38. 38.
    S. F. Dec and S. J. Gill,J. Solution Chem. 14, 417 (1985).Google Scholar
  39. 39.
    D. R. Biggerstaff, D. E. White, and R. H. Wood,J. Phys. Chem. 89, 4378 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Daniel KrauseJr.
    • 1
  • Bruce B. Benson
    • 1
  1. 1.Department of PhysicsAmherst CollegeAmherst

Personalised recommendations