Acta Neuropathologica

, Volume 15, Issue 4, pp 327–350 | Cite as

La dystrophie neuroaxonale infantile ou maladie de Seitelberger

Etude clinique, histologique et ultrastructurale de deux observations
  • M. Toga
  • M. Berard-Badier
  • D. Gambarelli-Dubois
Travaux Originaux

Résumé

Les auteurs rapportent 2 cas de DNAI.Le tableau clinique, d'évolution mortelle en 2 ans, associe un arrêt du développement psycho-moteur, des signes pyramidaux et extrapyramidaux, un nystagmus pendulaire avec atrophie optique. L'étude en microscopie optique définit:—les aspects morphologiques, la nature glycolipoprotéique et la répartition topographique des sphéroïdes, électivement disposés dans les structures médullaires, bulbo-protubérantielles et cérébelleuses, phylogénétiquement les plus anciennes, —l'atrophie du cortex cérébelleux, —la surcharge soudanophile avec état dysmyélinique du pallidum, —la dégénérescence des voies afférentes et efférentes des fibres longues de la moelle, du tronc cérébral et des voies optiques.L'étude en microscopie électronique précise la structure des sphéroïdes composés d'amas membrano-tubulaires et cisternaux, des corps denses amorphes ou lamellés, multigranuleux, pseudo-cristallins ou multivésiculaires et de mitochondries pathologiques. La formation de ce matériel est liée à l'hyperplasie du réticulum endoplasmique lisse et à l'accumulation de mitochondries anormales dans les péricaryons neuronaux, les prolongements dendro-axonaux, les culs de sacs synaptiques. Les auteurs rapprochent leurs constatations de faits semblables observés en pathologie humaine et expérimentale.

Infantile neuroaxonal dystrophy or seitelberger's disease. clinical, histological and ultrastructural study of 2 observations

Summary

Two cases of INAD are reported. Clinical features with fatal issue within 2 years, are characterized by psychomotor retardation, pyramidal and extrapyramidal signs, pendular nystagmus with bilateral atrophia of optic discs.Light microscopy shows:—the morphology of spheroids, their glycolipoproteid component and their elective distribution in medulla, brain-stem and cerebellum, phylogenetically the oldest parts of the CNS—a cerebellar cortical atrophia—sudanophilic fatty deposits associated to status dysmyelinatus of pallidum—a degeneration of pyramidal, spinocerebellar tracts and optic pathways.Electron microscopy in the two cortical biopsies allows to specify the internal structure of spheroids made of membrano-tubular and interconnected aggregates, amorphous and lamellar electron-dense bodies, multigranular bodies, cristalline-like inclusions, multivesicular bodies and involved mitochondria. That complex material represents an overproduction of smooth endoplasmic reticulum and abnormal mitochondria located in neuronal perikarya, axons, dendrites and enlarged synaptic bulbs. These pathological findings are compared to those already described in human and experimental cases.

Key-Words

Neuroaxonal Dystrophy Infantile Electron Microscopy Spheroids Smooth Endoplasmic Reticulum Mitochondria Seitelberger's Disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Aguilar, M. J., Kamoshita, S., Landing, B. H., Boder, E., Sedgwick, R. P.: The pathology of ataxia-telangiectasia. J. Neuropath. exp. Neurol.27, 659–676 (1968).Google Scholar
  2. Badurska, B., Jezierska, K., Rafalowska, J.: A case of Seitelberger's neuroaxonal dystrophy. Neurol. Neurochir. pol.18, 225–228 (1968a).Google Scholar
  3. Badurska, B., Jezierska, K., Rafalowska, J.: A case of neuroaxonal dystrophy of Seitelberger's recognized intravitally. Polish med. J.7, 1209–1213 (1968b).Google Scholar
  4. Behar, A., Rachilewitz, E., Rahaminoff, R., Denman, M.: Experimental nitrofurantoin polyneuropathy in rats. Early histological and electrophysiological alteration in peripheral nerves. Arch. Neurol. (Chic.)13, 160–163 (1965).Google Scholar
  5. Blakemore, W. F., Cavanagh, J. B.: Neuroaxonal Dystrophy occuring in an experimental “Dying-back” process in the rat. Brain92, 789–804 (1969).Google Scholar
  6. Blümcke, S., Niedorf, H. R., Rode, J.: Axoplasmic alterations in the proximal and distal stumps of transsected nerves. Acta neuropath. (Berl.)7, 44–61 (1966).Google Scholar
  7. Brannon, W., McCornick, W., Lampert, P.: Axonal dystrophy in the gracile nucleus of man. Acta neuropath. (Berl.)9, 1–6 (1967).Google Scholar
  8. Bunge, R. P., Bunge, M. B., Peterson, E. R.: An electron microscope study of cultured rat spinal cord. J. Cell Biol.24, 163–191 (1965).Google Scholar
  9. Cancilla, P. A., Barlow, R. M.: Structural changes of the central nervous system in Swayback (Enzootic Ataxia of lambs). IV—Electron microscopy of the white matter of the spinal cord. Acta neuropath. (Berl.)11, 294–300 (1968).Google Scholar
  10. ——: Structural changes of the central nervous system in Swayback of lambs. Acta neuropath. (Berl.)12, 307–313 (1969).Google Scholar
  11. Carlton, W. W., Kreutzberg, G.: Isonicotinic acid hydrazide induced spongy degeneration of the white matter in the brains of Pekin Ducks. Amer. J. Path.48, 91–105 (1966).Google Scholar
  12. Carpenter, C. S.: A histochemical study of oxidative enzymes in the nervous system of vitamin E deficient rats. Neurology (Minneap.)15, 328–332 (1965).Google Scholar
  13. Chou, S. M., Hartmann, H. A.: Axonal lesions and waltzing syndrome after IDPN administration in rats. With a concept “axostasis”. Acta neuropath. (Berl.)3, 428–450 (1964).Google Scholar
  14. ——: Electron microscopy of focal neuroaxonal lesions produced by B-B′-Iminodipropionitrile (IDPN) in rats. Acta neuropath. (Berl.)4, 590–603 (1965).Google Scholar
  15. Cordy, D. R., Richards, W. P. C., Bradford, G. E.: Systemic neuroaxonal dystrophy in suffolk sheep. Acta neuropath. (Berl.)8, 133–140 (1967).Google Scholar
  16. Cowen, D., Olmstead, E. V.: Infantile neuroaxonal dystrophy. J. Neuropath. exp. Neurol.22, 175–236 (1963).Google Scholar
  17. Christensen, A. K.: The fine structure of testicular interstitial cells in guinea pig. J. Cell Biol.26, 911–935 (1965).Google Scholar
  18. Crome, L., Weller, S. D. V.: Infantile neuroaxonal dystrophy. Arch. Dis. Childh.40, 502–507 (1965).Google Scholar
  19. Enders, A. C.: Observations in the fine structures of lutein cells. J. Cell Biol.12, 101–113 (1962).Google Scholar
  20. Estable, C., Acosta Ferreira, W., Sotelo, J. R.: An electron microscope study of regenerating nerve fibers. Z. Zellforsch.46, 387–399 (1957).Google Scholar
  21. Fujisawa, K.: An unique type of axonal alteration (so-called axonal dystrophy) as seen in Goll's nucleus of 277 cases of control. A contribution to the pathology of aging process. Acta neuropath. (Berl.)8, 255–275 (1967).Google Scholar
  22. Gonatas, N. K.: Mental retardation, cortical blindness and convulsions associated with abnormal neocortical presynatic terminals. J. Neuropath. exp. Neurol.25, 144–145 (1966).Google Scholar
  23. —, Evangelista, I., Welsh, G. O.: Axonic and synaptic changes in a case of psychomotor retardation. An electron microscopic study. J. Neuropath. exp. Neurol.26, 179–199 (1967).Google Scholar
  24. —, Goldensohn, E. S.: Unusual neocortical presynaptic terminals in a patient with convulsions, mental retardation and cortical blindness. An electron microscopic study. J. Neuropath. exp. Neurol.24, 539–562 (1965).Google Scholar
  25. Gross, H., Kaltenbäck, E., Uiberrak, B.: Über eine spätinfantile Form der Hallervorden-Spatzschen Krankheit. I. Mitteilung. Klinisch-anatomische Befunde. Dtsch. Z. Nervenheilk.176, 77–103 (1957).Google Scholar
  26. Hallervorden, J., Spatz, H.: Eigenartige Erkrankung im extrapyramidalen System mit besonderer Beteiligung der Globus Pallidus und der Substantia Nigra. Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. Z. ges. Neurol. Psychiat.79, 254–302 (1922).Google Scholar
  27. Heldey-Whyte, E. T., Floyd, M. B., Gilles, H., Uzman, B. G.: Infantile neuroaxonal dystrophy. A disease characterized by altered terminal axons and synaptic endings. Neurology (Minneap.)18, 891–906 (1968).Google Scholar
  28. Herman, M. M., Huttenlocher, P. R., Bensch, K. G.: Electron microscopic observations in infantile neuroaxonal dystrophy. Arch. Neurol. (Chic.)20, 19–34 (1969).Google Scholar
  29. Hirsch, T. V., Peiffer, J.: A histochemical study of the pre-lipid and metachromatic degenerative products in leucodystrophy. In: Cerebral lipidoses, pp. 68–76. L. Van Bogaert, J. N. Cumings et A. Lowenthal (Edit.) Oxford: Blackwell Scientific publications 1957.Google Scholar
  30. Hudson, G., Hartmann, J. F.: The relationship between dense bodies and mitochondria in motor neurons. Z. Zellforsch.54, 147 (1961).Google Scholar
  31. Huttenlocher, P. R., Gilles, F. H.: Infantile neuroaxonale dystrophy. Clinical pathological and histochemical findings in a family with 3 affected siblings. Neurology (Minneap.)17, 1174–1184 (1967).Google Scholar
  32. Jellinger, K.: Neuroaxonale Dystrophien. Verh. dtsch. Ges. Path.52, 92–126 (1968).Google Scholar
  33. —, Seitelberger, F., Rosenkranz, W.: Infantile neuroaxonal dystrophie. Frühform mit bevorzugtem Kleinhirnbefall. Acta neuropath. (Berl.)10, 123–131 (1968).Google Scholar
  34. Jervis, G. A.: Degenerative encephalopathy of childhood (cortical degeneration, cerebellar atrophy, cholesterinosis of basal ganglia. J. Neuropath. exp. Neurol.16, 308–320 (1957).Google Scholar
  35. Jones, A. L., Fawcett, D. W.: Hypertrophy of the agranular endoplasmic reticulum in hamster liver induced by phenobarbital. J. Histochem. Cytochem.14, 215–232 (1966).Google Scholar
  36. Kamoshita, S., Neustein, H. B., Landing, B. H.: Infantile neuroaxonal dystrophy with neonatal onset. J. Neuropath. exp. Neurol.27, 300–323 (1968).Google Scholar
  37. —, Reed, G. B., Aguilar, M. J.: Axonal dystrophy in a case of Canavan's spongy degeneration. Neurology (Minneap.)17, 895–898 (1967).Google Scholar
  38. Lampert, P.: A comparative electron microscopy study of reactive degenerating, regenerating and dystrophic axons. J. Neuropath. exp. Neurol.26, 345–368 (1967).Google Scholar
  39. —, Blumberg, J. M., Pentschew, A.: An electron microscopic study of dystrophic axons in the gracile and cuneate nuclei of vitamin E deficient rats axonal dystrophy in vitamin E deficiency. J. Neuropath. exp. Neurol.23, 60–77 (1964).Google Scholar
  40. —, Cressman, M. R.: Fine structural changes of myelin sheaths after axonal degeneration in the spinal cord of rats. Amer. J. Path.49, 1139–1155 (1966).Google Scholar
  41. —, Pentschew, A.: An electron microscopic study of spheroid and convoluted bodies in dystrophic terminal axons. Acta neuropath. (Berl.)4, 158–168 (1964).Google Scholar
  42. Lyon, G., See, G.: La dégénérescence neuro-axonale infantile (maladie de Seitelberger). Etude anatomique d'une observation. Rev. neurol.109, 133–155 (1963).Google Scholar
  43. Mugnaini, E., Forstrønen, P. F.: Ultrastructural studies on the cerebellar histogenesis. I. Differentiation of granule cells and development of glomeruli in the chick embryo. Z. Zellforsch.77, 115–143 (1967).Google Scholar
  44. Nakai, H., Landing, B. H., Schubert, W. K.: Seitelberger's spastic amaurotic axonal idiocy. Pediatrics25, 441–449 (1960).Google Scholar
  45. Newberne, J. W., Robinson, V. B., Estill, L., Brinkman, P. C.: Granular structures in brains of apparently normal dogs. Amer. J. vet. Res.21, 782–786 (1960).Google Scholar
  46. O'Brien, J. S.: Discussion to Sung, J. H., et E. M. Stadlan: Neuroaxonal dystrophy in congenital biliary atrophy. J. Neuropath. exp. Neurol.25, 119–120 (1966).Google Scholar
  47. Pentschew, A., Schwarz, K.: Systemic axonal dystrophy in vitamin E deficient adult rats. Acta neuropath. (Berl.)1, 313–334 (1962).Google Scholar
  48. Prineas, J.: The pathogenesis of “dying-back” polyneuropathies. Part I et II: J. Neuropath. exp. Neurol.28, 571–621 (1969).Google Scholar
  49. Rabinowicz, T., Wildi, E.: Spastic amaurotic axonal idiocy. A familial juvenile form of a lipo-glyco-protidic thesaurismosis including a pallidal siderosis, p. 34. In: Cerebral lipidoses. A symposium J. N. Cumings (Ed.), Oxford: Blackwell 1957.Google Scholar
  50. Reynolds, E. S.: The use of lead citrate at high pH as an electron—opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).Google Scholar
  51. Sacks, O. W., Aguilar, M. J., Brown, W. J.: Hallervorden-Spatz disease. Its pathogenesis and place among the axonal dystrophies. Acta neuropath. (Berl.)6, 164–174 (1966).Google Scholar
  52. Sandbank, O.: Infantile neuroaxonal dystrophy. Arch. Neurol. (Chie.)12, 155–159 (1965).Google Scholar
  53. Schlote, W.: Morphologische und histochemische Untersuchungen an retrograden Axonveränderungen im Zentralnervensystem. Acta neuropath. (Berl.)1, 135–158 (1961).Google Scholar
  54. Schneck, S. A.: Neuropathological features of human organ transplantation. Proc. 5th Cong. Inter. Neuropath., pp. 263–269. International Congres series No. 100. Amsterdam: Excerpta Medica Foundation 1966a.Google Scholar
  55. —: Neuropathological features of human organ transplantation. J. Neuropath. exp. Neurol.25, 18–39 (1966b).Google Scholar
  56. Seitelberger, F.: Eine unbekannte Form von infantiler Lipoidspeicher-Krankheit des Gehirns. Proc. Ist. Cong. Neuropath., Vol. 3, pp. 323–333. Turin: Rosenberg et Sellier 1952.Google Scholar
  57. —: Eine eigenartige Stoffwechselerkrankung der Ganglienzellen im Zentralnervensystem. Proc. 5th Int. Cong. Neurol., Vol. 3, pp. 484–481. Lisbon: comptes rendus 1954.Google Scholar
  58. —: Discussion sur le cas de Rabinowicz et Wildi. In: Cerebral lipidoses. A symposium. J. N. Cumings, Ed. Oxford: Blackwell 1957a.Google Scholar
  59. Seitelberger, F.: Zur Morphologie und Histochemie der degenerativen Axonveränderungen im Zentralnervensystem. Proc. III. Cong. Internat. Neuropath., pp. 127–147. Brussels, Acta Med. Belg. 1957 b.Google Scholar
  60. — Gootz, E., Gross, H.: Beitrag zur spätinfantilen Hallervorden-Spatzschen Krankheit. Acta neuropath. (Berl.)3, 16–28 (1963).Google Scholar
  61. —: Über eine spätinfantile Form der Hallervorden-Spatzschen Krankheit. II. Mitteilungen: Histochemische Befunde. Erörterung der Nosologie. Z. dtsch. Nervenheilk.176, 104–125 (1957).Google Scholar
  62. Slagel, D. E., Hartmann, H. A.: The distribution of neuroaxonal lesions in mice injected with iminodipropionitrile with special reference to the vestibular system. J. Neuropath. exp. Neurol.24, 599–620 (1965).Google Scholar
  63. Sotelo, C., et Palay: Communication personnelle (1970).Google Scholar
  64. Sung, J. H.: Neuroaxonal dystrophy in mucoviscidosis. J. Neuropath. exp. Neurol.23, 567–583 (1964).Google Scholar
  65. —: Neuroaxonal dystrophy in aging. Proc. 5th Cong. Int. Neuropath., pp. 478–481. International Congress Serieso 100. Amsterdam: Excerpta Medica Foundation 1966.Google Scholar
  66. —, Stadlan, E. M.: Neuroaxonal dystrophy in congenital biliary atresia. J. Neuropath. exp. Neurol.25, 118–120 (1966a).Google Scholar
  67. ——: Neuroaxonal dystrophy in congenital biliary atresia. J. Neuropath. exp. Neurol.25, 341–361 (1966b).Google Scholar
  68. Takei, Y.: Infantile neuroaxonal dystrophy (Seitelberger's disease). Report of an autopsy case. Acta neuropath. (Berl.)5, 1–15 (1965).Google Scholar
  69. Van Bogaert, L., et Scholz, W.: Klinischer, genealogischer und pathologisch-anatomischer Beitrag zur Kenntnis der familiären diffusen Sklerose. Z. ges. Neurol. Psychiat.141, 510–541 (1932).Google Scholar
  70. Webster, H. de F.: Transient focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration. J. Cell Biol.12, 361–384 (1962).Google Scholar
  71. Wohlfart, G.: Degenerative and regenerative axonal changes in ventral horn, brain stem and cerebral cortex in amyotrophic lateral sclerosis, 1959. Cf. Cowen et Olmstead (1963).Google Scholar
  72. Wood, R. L.: The fine structure of hepatic cells in chronic poisoning and during recovery. Amer. J. Path.46, 307–330 (1965).Google Scholar
  73. Zu Rhein, G. M.: Discussion to Sung, J. H., et E. M. Stadlan: Neuroaxonal dystrophy in congenital biliary atresia. J. Neuropath. exp. Neurol.25, 119 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • M. Toga
    • 1
  • M. Berard-Badier
    • 1
  • D. Gambarelli-Dubois
    • 1
  1. 1.Unité de Recherches Neurobiologiques de l'INSERM et Centre de Microscopie Electronique de la Faculté de MédecineMarseille 5meFrance

Personalised recommendations