Journal of Paleolimnology

, Volume 10, Issue 3, pp 213–252 | Cite as

A synthesis of post-glacial diatom records from Lake Baikal

  • J. Platt Bradbury
  • Ye. V. Bezrukova
  • G. P. Chernyaeva
  • S. M. Colman
  • G. Khursevich
  • J. W. King
  • Ye. V. Likoshway


The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake.

Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence.

On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During glacial periods, the deep basin sediments of Lake Baikal are dominated by rapidly deposited clastics entering from large rivers with possibly glaciated headwaters. On the sublacustrine Academician Ridge (depth = 300 m), however, detailed analysis of the diatom biostratigraphy indicates that diastems (hiatuses of minor duration) and (or) highly variable rates of accumulation complicate paleolimnologic and paleoclimatic reconstructions from these records.

Key words

diatoms paleolimnology palynology Holocene climate change Lake Baikal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, D. P., J. P. Bradbury, H. J. Rieck & A. M. Sarna-Wojcicki, 1990. Environmental changes in the Tule Lake basin, Siskiyou and Modoc Counties, California from 3 to 2 million years before present. U.S. Geol. Survey Bull. 1933: 13 pp.Google Scholar
  2. Battarbee, R. W., 1973. A new method for the estimation of absolute microfossil numbers, with reference especially to diatoms. Limnol. Oceanogr. 18: 647–653.Google Scholar
  3. de Beaulieu, J.-L., 1982. Palynological subdivision of the Holocene in France. Striae 16: 106–110.Google Scholar
  4. Belova, V. A., B. F. Lut, L. P. Loginova & G. K. Khursevich, 1983. Sediment formation in Lake Baikal. Hydrobiologia 103: 281–285.Google Scholar
  5. Berger, A., 1984. Accuracy and frequency stability of the earth's orbital elements during the Quaternary, In A. L. Berger, J. Imbrie, J. Hays, G. Kukla & B. Saltzman (eds.) Milankovitch and climate. NATO ASI series C 126, D. Reidel, Boston, Massachusetts: 3–39.Google Scholar
  6. Bezrukova, Ye. V., Y. A. Bogdanov, D. F. Williams, M. A. Grachev, L. Z. Granina, N. V. Ignatova, E. B. Karabanov, V. M. Kuptsov, A. V. Kurylev, P. P. Letunova, Ye. V. Likhoshway, G. P. Chernyaeva, M. K. Shimaraeva & A. O. Yakushin, 1991. Deep changes in the ecosystem of northern Baikal in the Holocene. Acad. Sci. USSR, Geol. Rept. 321: 1032–1037. (Russian)Google Scholar
  7. Bezrukova, E., P. Letunova & E. Karabanov, 1992. Palynological investigations of Holocene deposits of Lake Baikal. In S. Horie (ed.), International Project on Paleolimnology and Late Cenozoic Climate 6: 59–68.Google Scholar
  8. Bradbury, J. P., 1988. A climatic limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J. Paleolim. 1: 115–131.Google Scholar
  9. Champion, D. E., M. A. Lanphere & M. A. Kuntz, 1988. Evidence for a new geomagnetic reversal from lava flows in Idaho: discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. J. Geophys. Res. 93: 11667–11680.Google Scholar
  10. Cheremisinova, E. A., 1973. Diatom flora of Neogene deposits of Pribaikalie: Acad. Sci. USSR, Siberian Div., Limnol. Inst., 67 pp. (Russian)Google Scholar
  11. Chernyaeva, G. P., 1970. Diatom algae of bottom sediments of northern Baikal. In Bottom Sediments of Baikal. Acad. Sci. USSR, Siberian Div., Limnol. Inst.: 144–156. (Russian)Google Scholar
  12. Colman, S. M., E. B. Karabanov, D. F. Williams, P. P. Hearn, J. W. King, W. H. Orem, J. P. Bradbury, W. C. Shanks, III, G. A. Jones & S. J. Carter, 1992. Lake Baikal paleoclimate project, southeastern Siberia: Initial dating and paleoenvironmental results. In S. Horie (ed.), International Project on Paleolimnology and Late Cenozoic Climate 6: 30–39.Google Scholar
  13. Colman, S. M., V. M. Kuptsov, G. A. Jones & S. J. Carter, 1993. Radiocarbon dating of Lake Baikal sediments — a progress report. Geologiya i Geofizika 34: 68–77.Google Scholar
  14. Eppley, R. W., 1977. The growth and culture of diatoms. In D. Werner (ed.), The biology of diatoms. Univ. California Press, Berkeley: 24–64.Google Scholar
  15. Faegri, K. & J. Iversen, 1975. Textbook of pollen analysis (3rd ed.). Hafner, New York: 295 pp.Google Scholar
  16. Federova, V. A., 1975. Diatom algae from bottom sediments. In G. I. Galazii & YU. P. Partuzin (eds.) Dynamics of the Baikal basin. Acad. Sci. USSR, Siberian Div., Trans. Limnol. Inst. 21: 273–282. (Russian)Google Scholar
  17. Flower, R. J., 1993. A taxonomic re-evaluation of endemicCyclotella taxa in Lake Baikal, Siberia. Beiheft zur Nova Hedwigia 106: 203–220.Google Scholar
  18. Genkal, S. I. & G. I. Popovskaja, 1990a. New representative of the genusStephanodiscus Ehr. (S. binderanus (Kutz.) Krieg. var.baicalensis Popovsk. et Genkal var. nov. Acad. Sci. USSR, Biol. Inland Wat., Info. Bull. 45: 27–31. (Russian)Google Scholar
  19. Genkal, S. I. & G. I. Popovskaja, 1990b. Peculiarities of spore and auxospore morphology and biology ofAulacosira islandica (Bacillariophyta). Acad. Sci. USSR, Biol. Inland Wat., Info. Bull. 89: 3–6. (Russian)Google Scholar
  20. Goldyrev, G. S., 1982. Sedimentation and Quaternary history of the Lake Baikal basin. Acad. Sci. USSR, Siberian Div., Limnol. Inst., 181 pp. (Russian)Google Scholar
  21. Granin, N. G. & M. N. Shimaraev, 1993., Vertical distribution of temperature and stability and development of convection in Lake Baikal. Geologia i Geofizika.Google Scholar
  22. Granina, L. Z., E. B. Karabanov, M. K. Shimaraeva, D. F. Williams & V. M. Kupsov, 1992. Biogenic silica of Baikal bottom sediments used for paleo-reconstructions. In S. Horie (ed.), International Project on Paleolimnology and Late Cenozoic Climate 6: 52–59.Google Scholar
  23. Hutchinson, G. E., 1957. A treatise on limnology, 1. J. Wiley & Sons, New York, 1015 pp.Google Scholar
  24. Hutchinson, G. E., 1967. A treatise on limnology, 2. J. Wiley & Sons, New York, 1115 pp.Google Scholar
  25. Karabanov, E., E. Bezrukova, L. Granina, Y. Inouchi, F. Lazo, P. Letunova, V. Mukhina, M. Shimaraeva & E. Stolbova, 1992. Climatic sedimentation rhythms of Baikal sediments. In S. Horie (ed.), International Project on Paleolimnology and Late Cenozoic Climate 6: 21–30.Google Scholar
  26. Khotinskiy, N. A., 1984a. Holocene vegetation history, Ch. 18. In A. A. Velichko (ed.), Late Quaternary environments of the Soviet Union.: Univ. Minnesota Press, Minneapolis: 179–200.Google Scholar
  27. Khotinskiy, N. A., 1984b. Holocene climate change, Ch. 28. In A. A. Velichko (ed.), Late Quaternary environments of the Soviet Union.: Univ. Minnesota Press, Minneapolis: 305–309.Google Scholar
  28. Kiladis, G. N. & H. F. Diaz, 1989. Global climatic anomalies associated with extremes in the southern oscillation. J. Climate 2: 1069–1090.Google Scholar
  29. Kilham, P., 1990. The ecology ofMelosira species in the great lakes of Africa. In M. M. Tilzer & C. Serruya (eds.), Large lakes. Springer Verlag, Berlin: 414–427.Google Scholar
  30. Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.Google Scholar
  31. King, J. W., J. A. Peck, P. F. Gangemi & V. A. Kravchinsky, 1993. Paleomagnetic and rock-magnetic studies of Lake Baikal sediments: A progress report on paleoenvironmental interpretations and sedimentation rate estimates. Geologiya i Geofizika 34: 168–184.Google Scholar
  32. Kozhov, M. M., 1955. Seasonal and annual variation in the plankton of Lake Baikal. Proc. Acad. Sci. USSR, All Union Hydrobiol. Soc. 6: 133–157. (Russian)Google Scholar
  33. Kozhov, M. M., 1963. Lake Baikal and its life. Dr. W. Junk, The Hague, Netherlands, 344 pp.Google Scholar
  34. Kozhova, O. M., 1959a. Phytoplankton of Maloye More. Trans. Baikal Limnol. Sta. 17: 255–274. (Russian)Google Scholar
  35. Kozhova, O. M., 1959b. Systematic list of the plankton algae of Lake Baikal and some data on the biology of the common forms. Acad. Sci. USSR, Bull. Siberian Div. 10: 112–124. (Russian)Google Scholar
  36. Kozhova, O. M., 1961. Periodic changes in the development of phytoplankton of Lake Baikal. Acad. Sci. USSR, Proc. All Union Hydrological Soc. 11: 28–43. (Russian)Google Scholar
  37. Lake Baikal Paleoclimate Project Members (S. M. Colman, compiler), 1992. Initial results of U.S.-Soviet Paleoclimate study of Lake Baikal. Eos 73: 457–462.Google Scholar
  38. Loginova, L. P. & G. I. Khursevich, 1986. New and rare species of diatoms of the generaCyclotella andStephanodiscus from bottom sediments of Lake Baikal. In New and poorly known species of fossil animals and plants of Byelorussia. Acad. Sci. BSSR (Minsk), Inst. Geochem. and Geophys.: 142–148. (Russian)Google Scholar
  39. Loginova, L. P. & G. K. Khursevich, 1990. Fossil diatom flora of Lake Baikal. In New examples of fossil fauna and flora of Byelorussia and other regions of the USSR, Acad. Sci. BSSR (Minsk), Inst. Geochem. and Geophys., Coll. Sci. Trans.: 146–176. (Russian)Google Scholar
  40. Lund, J. W. G., 1966, The importance of turbulence in the periodicity of certain freshwater species of the genusMelosira: Bot. J. 51: 176–187. (Russian)Google Scholar
  41. Lydolph, P. E., 1977. Climates of the Soviet Union, Ch. 4, Eastern Siberia. Elsevier Scientific Publishing Company, The Hague, Netherlands: 91–115.Google Scholar
  42. Mangerud, J., S. T. Anderson, B. E. Berglund & J. J. Donner, 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109–128.Google Scholar
  43. Mortlock, R. A. & P. N. Froelich, 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res. 36: 1415–1426.Google Scholar
  44. Nikiteeva, T., 1993. New species ofCyclotella found in sediments of Lake Baikal and Tunka depression [abs.]. Proc. Fifth Workshop on Diatom Algae, Irkutsk, Russian Bot. Soc., Russian Acad. Sci., Siberian Div., Limnol. Inst.: 101–103. (Russian)Google Scholar
  45. Orem, W. H., H. E. Lerch & R. K. Kotra, 1993. Lignin oxidation products, organic carbon, and total nitrogen in sediments of Lake Baikal, Russia: organic geochemical indicators of late Quaternary paleovegetation and paleoclimate in north-central Asia. Geologiya i Geofizika 34: 108–123.Google Scholar
  46. Patrikjeva, G. I., 1959. Bottom sediments of Maloye More. In Investigations of Maloye More. Acad. Sci. USSR, Trans. Baikal Limnol. Sta. 17: 205–254. (Russian)Google Scholar
  47. Popova, S. M., V. D. Mats, G. P. Chernyaeva, M. K. Shimaraeva, A. A. Kulchitski, G. A. Vorobieva, V. M. Klimanova, E. E. Kononov, A. Ya. Kravchinski, N. V. Kulagina, F. I. Lazo, L. A. Orlova, V. A. Panichev, A. M. Cizikov & I. V. Shibanova, 1989. Paleolimnological reconstruction of the Baikal rift zone: Acad. Sci. USSR, Siberian Div. Limnol. Inst.: 110 pp. (Russian)Google Scholar
  48. Popovskaya, G. I., 1991. Phytoplankton of Lake Baikal and its long-term changes (1958–1990) — abstract of a dissertation. Acad. Sci. USSR, Lenin Order of the Siberian Div., Central Siberian Botanical Garden, Novosibirsk: 32 pp. (Russian)Google Scholar
  49. Qiu, L., D. F. Williams, A. Gvorzdkov, E. Karabanov, M. Shimaraeva, 1993. Biogenic silica accumulation and paleoproductivity in the northern basin of Lake Baikal during the Holocene. Geology 21: 25–28.Google Scholar
  50. Rossby, C. G., 1945. The scientific basis of modern meteorology. In F A. Berry, E. Bollay & N R. Beers, (eds.), Handbook of meteorology, McGraw-Hill, New York: 502–529.Google Scholar
  51. Shimaraev, M. N., N. G. Granin & L. N. Kuimova, 1992. Possible changes of the hydrophysical conditions in Baikal during the late Pleistocene and Holocene. In S. Horie (ed.), International Project on Paleolimnology and Late Cenozoic Climate 6: 47–52.Google Scholar
  52. Skabichevsky, A. P., 1960. Plankton diatom algae of freshwaters of the USSR. In Materials on the diversity of fauna and flora of the USSR. Issue of the Moscow Society of Experimental Naturalists, Univ. of Moscow, New Series, Botanical Division 11 (XIX), 345 pp. (Russian)Google Scholar
  53. Stoermer, E. F. & J. J. Yang, 1970. Distribution and relative abundance of dominant plankton diatoms in Lake Michigan. Great Lakes Res. Pub. 16, Univ. Michigan, Ann Arbor, 64 pp.Google Scholar
  54. Theriot, E. C., 1987. Principal component analysis and taxonomic interpretation of environmentally related variation in silicification inStephanodiscus (Bacillariophyceae). Brit. Phycol. J. 22: 359–373.Google Scholar
  55. Theriot, E. C., 1992. Clusters, species concepts and morphological evolution of diatoms. Syst. Biol. 41: 141–157.Google Scholar
  56. Theriot, E. C., H. Håkansson & E. F. Stoermer, 1988. Morphometric analysis ofStephanodiscus alpinus (Bacillariophyceae) and its morphology as an indicator of lake trophic status: Phycologia 27: 485–493.Google Scholar
  57. Thomas, E. A., 1951. Sturmeinfluß auf das Tiefenwasser des Zürichsees im Winter. Schweiz Zeit. für Hydrol. 13: 5–23.Google Scholar
  58. Thompson, R. S., 1991, Pliocene environments and climates in the western United States. In T. M. Cronin & H. J. Dowsett, (eds.), Pliocene Climates. Quat. Sci. Rev. 10: 115–132.Google Scholar
  59. Weiss, R. F., E. C. Carmack & V. M. Koropalov, 1991. Deep water renewal and biological production in Lake Baikal. Nature 349: 665–669.Google Scholar
  60. Whiteside, M. C., J. P. Bradbury & S. J. Tarapchak, 1980. Limnology of the Klutlan moraines. Quat. Res. 14: 130–148.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. Platt Bradbury
    • 1
  • Ye. V. Bezrukova
    • 2
  • G. P. Chernyaeva
    • 3
  • S. M. Colman
    • 4
  • G. Khursevich
    • 5
  • J. W. King
    • 6
  • Ye. V. Likoshway
    • 2
  1. 1.U.S. Geological Survey, MS 919Federal CenterDenverUSA
  2. 2.Limnological InstituteRussia Academy of SciencesIrkutskRussia
  3. 3.Institute of the Earth CrustRussia Academy of SciencesIrkutskRussia
  4. 4.U.S. Geological SurveyWoods HoleUSA
  5. 5.Institute of Geochemistry and GeophysicsByelorussian Academy of SciencesMinskByelorussia
  6. 6.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA

Personalised recommendations