Advertisement

Journal of Low Temperature Physics

, Volume 53, Issue 5–6, pp 731–748 | Cite as

Dynamics of superconductors and minimum entropy production

  • B. I. Ivlev
  • N. B. Kopnin
  • I. A. Larkin
Article

Abstract

A simple model of the resistive state in a superconducting channel with a periodic array of inhomogeneities is considered. It is shown that the dynamic equations for the resistive state in this channel do not, in principle, determine a unique value of the Josephson oscillation period in the resistive state, i.e., a unique value of the electric field in the channel at a given current. Such an ambiguity appears to be characteristic for the resistive state in narrow superconducting channels also in a quite general situation not restricted to any particular model. In the simplest case considered here it is shown, however, that fluctuation effects lead to relaxation of the system to the state that corresponds to the minimum possible electric field at a given current, i.e., to the state with the minimum entropy production.

Keywords

Entropy Simple Model Magnetic Material Dynamic Equation Oscillation Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Langer and V. Ambegaokar,Phys. Rev. 164, 498 (1967).Google Scholar
  2. 2.
    T. J. Rieger, D. J. Scalapino, and J. E. Mercereau,Phys. Rev. Lett. 27, 1787 (1971).Google Scholar
  3. 3.
    W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Low Temp. Phys. 16, 145 (1974).Google Scholar
  4. 4.
    L. Kramer and A. Baratoff,Phys. Rev. Lett. 38, 518 (1977).Google Scholar
  5. 5.
    B. I. Ivlev and N. B. Kopnin,Pisma Zh. Eksp. Teor. Fiz. 28, 640 (1978).Google Scholar
  6. 6.
    B. I. Ivlev, N. B. Kopnin, and L. A. Maslova,Zh. Eksp. Teor. Fiz. 78, 1963 (1980).Google Scholar
  7. 7.
    B. I. Ivlev and N. B. Kopnin,J. Low Temp. Phys. 44, 453 (1981).Google Scholar
  8. 8.
    E. V. Bezugly, E. N. Bratus, and V. P. Galaiko,Fiz. Nizk. Temp. 3, 1010 (1977).Google Scholar
  9. 9.
    V. Ambegaokar and B. I. Ivlev, unpublished.Google Scholar
  10. 10.
    B. I. Ivlev, N. B. Kopnin, and I. A. Larkin,J. Low Temp. Phys. in press.Google Scholar
  11. 11.
    P. Glansdorff and I. PrigogineThermodynamic Theory of Structure Stability and Fluctuations (Wiley-Interscience, London, 1971).Google Scholar
  12. 12.
    B. I. Ivlev, N. B. Kopnin, and L. A. Maslova,Zh. Eksp. Teor. Fiz. 83, 1533 (1982).Google Scholar
  13. 13.
    A. Schmid,Phys. Kondens. Matter 5, 302 (1966).Google Scholar
  14. 14.
    L. P. Gor'kov and G. M. Eliashberg,Zh. Eksp. Teor. Fiz. 54, 612 (1968).Google Scholar
  15. 15.
    A. A. Abrikosov,Zh. Eksp. Teor. Fiz. 32, 1442 (1957).Google Scholar
  16. 16.
    V. I. Karpman,Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • B. I. Ivlev
    • 1
  • N. B. Kopnin
    • 1
  • I. A. Larkin
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsAcademy of Sciences of the USSRRussia

Personalised recommendations