Advertisement

Journal of Low Temperature Physics

, Volume 46, Issue 5–6, pp 479–515 | Cite as

Photographic studies of quantized vortex lines

  • E. J. Yarmchuk
  • R. E. Packard
Article

Abstract

A study of the behavior of systems of quantized vortex lines in rotating superfluid4He is described. Using a photographic technique, the positions of the vortex cores at the free surface of the liquid are recorded in the form of time-lapse motion pictures. The observation of stationary arrays of vortices are discussed and a comparison with the predictions of rectilinear vortex theory is made. Discrepancies between the observations and this theoretical model are noted, and the limitations of the experimental method are described. Several distinct types of periodic array motion have been observed. A description of their analysis as well as possible theoretical and experimental interpretations are given. The final part of this study involves phenomena associated with acceleration of the vessel. The analysis of film records and light signal amplitude measurements for repeated spinups of the vessel reveals statistical trends in the rate of appearance of vortices.

Keywords

Vortex Signal Amplitude Vortex Core Light Signal Final Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Williams and R. E. Packard,J. Low Temp. Phys. 39, 553 (1980).Google Scholar
  2. 2.
    E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard,Phys. Rev. Lett. 43, 214 (1979).Google Scholar
  3. 3.
    T. C. Fry,Am. Math. Monthly 39, 199 (1932).Google Scholar
  4. 4.
    G. B. Hess,Phys. Rev. 161, 189 (1967).Google Scholar
  5. 5.
    D. Stauffer and A. L. Fetter,Phys. Rev. 168, 156 (1968).Google Scholar
  6. 6.
    L. J. Campbell and R. M. Ziff,Phys. Rev. B 20, 1886 (1979).Google Scholar
  7. 7.
    L. J. Campbell and R. M. Ziff, Los Alamos Scientific Laboratory Report No. LA-7384-MS (1978), unpublished.Google Scholar
  8. 8.
    G. A. Williams and R. E. Packard,Phys. Rev. Lett. 33, 280 (1974).Google Scholar
  9. 9.
    H. Lamb,Hydrodynamics (Dover, New York, 1945), Sect. 157.Google Scholar
  10. 10.
    Lord Kelvin,Mathematical and Physical Papers (1878), Vol. IV, p. 135.Google Scholar
  11. 11.
    T. H. Havelock,Phil. Mag. 11, 617 (1931).Google Scholar
  12. 12.
    D. Stauffer and A. L. Fetter,Phys. Rev. 168, 156 (1968).Google Scholar
  13. 13.
    M. R. Williams and A. L. Fetter,Phys. Rev. B 16, 4846 (1977).Google Scholar
  14. 14.
    W. Thomson,Phil. Mag. 10, 155 (1980).Google Scholar
  15. 15.
    E. S. Raja Gopal,Ann. Phys. (N.Y.)29, 350 (1964).Google Scholar
  16. 16.
    H. E. Hall,Proc. Roy. Soc. (London) A245, 546 (1958); S. D. Tsakadze,Fiz. Nizk. Temp. 4, 148 (1978) [Sov. J. Low Temp. Phys. 4, 72 (1978)].Google Scholar
  17. 17.
    C. D. Andereck, J. Chalupa, and W. I. Glaberson,Phys. Rev. Lett. 44, 33 (1980).Google Scholar
  18. 18.
    R. A. Ashton and W. I. Glaberson,Phys. Rev. Lett. 42, 1062 (1979).Google Scholar
  19. 19.
    E. B. Sonin,Zh. Eksp. Teor. Fiz. 70, (1976) [Sov. Phys.—JETP 43, 1027 (1976).Google Scholar
  20. 20.
    G. W. Rayfield and F. Reif,Phys. Rev. 136, A1194 (1964).Google Scholar
  21. 21.
    H. E. Hall and W. F. Vinen,Proc. Roy. Soc. (London) A238, 215 (1956).Google Scholar
  22. 22.
    G. A. Williams and R. E. Packard,J. Low Temp. Phys. 33, 459 (1978); R. M. Ostermeier and W. I. Glaberson,J. Low Temp Phys. 25, 317 (1976).Google Scholar
  23. 23.
    R. E. Packard and T. M. Sanders,Phys. Rev. Lett. 22, 823 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • E. J. Yarmchuk
    • 1
  • R. E. Packard
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaBerkeley

Personalised recommendations