Journal of Low Temperature Physics

, Volume 51, Issue 3–4, pp 227–248 | Cite as

History-dependent nonlinear dissipation in superfluid3He-A

  • R. Gay
  • M. Bagley
  • J. R. Hook
  • D. J. Sandiford
  • H. E. Hall


We have studied nonlinear dissipation in oscillatory flow of3He-A through 49-µm- and 17-µm-wide channels by means of torsion pendulum experiments at about 50 Hz. The observed effects are strongly history dependent; the dissipation at a given measuring amplitude is strongly increased if the sample is cooled through Tc while oscillating at large amplitude. Once a highly dissipative state has been created it does not noticeably decay below Tc, though a more dissipative state can be created below Tc by a period of sufficiently large-amplitude oscillation. The results are described semiquantitatively by a model based on the idea of superflow collapse by motion of the\(\hat l\) vector, with consequent orbital dissipation. The history dependence is introduced into this model by postulating the existence of surface singularities in the\(\hat l\) texture, the density of which is determined by the previous history of the helium.


Helium Magnetic Material Large Amplitude Previous History Surface Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Mermin and T.-L. Ho,Phys. Rev. Lett. 36, 594 (1976).Google Scholar
  2. 2.
    P. Bhattarcharyya, T.-L. Ho, and N. D. Mermin,Phys. Rev. Lett. 39, 1290, 1691 (1977).Google Scholar
  3. 3.
    P. C. Main, W. T. Band, J. R. Hook, H. E. Hall, and D. J. Sandiford, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Duffy, eds. (Plenum, New York, 1977), p. 117.Google Scholar
  4. 4.
    M. C. Cross and P. W. Anderson, inProceedings LT14 (North-Holland, Amsterdam, 1975), Vol. 1, p. 29.Google Scholar
  5. 5.
    M. Bagley, P. C. Main, J. R. Hook, D. J. Sandiford, and H. E. Hall,J. Phys. C 11, L729 (1978).Google Scholar
  6. 6.
    N. D. Mermin, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Duffy, eds. (Plenum, New York, 1977), p. 3.Google Scholar
  7. 7.
    R. Gay, H. E. Hall, J. R. Hook, and D. J. Sandiford,Physica 108B, 797 (1981).Google Scholar
  8. 8.
    J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975), Appendix A.Google Scholar
  9. 9.
    W. F. Brinkman and M. C. Cross, inProgress in Low Temp Physics, D. Brewer, ed. (North-Holland, Amsterdam, 1978), Vol. VIIa, p. 107.Google Scholar
  10. 10.
    J. R. Hook and H. E. Hall,J. Phys. C 12, 783 (1979).Google Scholar
  11. 11.
    T.-L. Ho,Phys. Rev. B 18, 1144 (1978).Google Scholar
  12. 12.
    A. L. Fetter and M. R. Williams,Phys. Rev. B 23, 2186 (1981).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshittz,Statistical Physics (Pergamon, Oxford, 1958), §26.Google Scholar
  14. 14.
    G. E. Volovik,JETP Lett. 27, 573 (1978)Pis'ma Zh. Eksp. Teor. Fiz. 27, 605 (1978)].Google Scholar
  15. 15.
    D. N. Paulson, M. Krusius, and J. C. Wheatley,Phys. Rev. Lett. 36, 1322 (1976).Google Scholar
  16. 16.
    J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy,Phys. Rev. Lett. 40, 565 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. Gay
    • 1
  • M. Bagley
    • 1
  • J. R. Hook
    • 1
  • D. J. Sandiford
    • 1
  • H. E. Hall
    • 1
  1. 1.Physics DepartmentUniversity of ManchesterManchesterEngland

Personalised recommendations