Journal of Low Temperature Physics

, Volume 50, Issue 5–6, pp 605–633 | Cite as

Vibrating wire measurements in liquid3He II. The superfluid B phase

  • D. C. Carless
  • H. E. Hall
  • J. R. Hook


Measurements with a vibrating wire viscometer in superfluid3He-B at temperatures down to 0.6 mK are described. The need to consider compressibility of the superfluid component in any analysis of vibrating wire measurements is clearly demonstrated and a theoretical calculation of the force acting on a vibrating wire in a finite compressible superfluid is given. The experimental data are consistent with this calculation if theoretical values of the second viscosity ξ3 are used in the analysis. The failure of the hydrodynamic theory when the quasiparticle mean free path1 is comparable to the wire radius a was observed, and an expression has been deduced for the force acting on the wire when1 is finite. Experimental and theoretical evidence is presented to show that this expression is valid for arbitrary1/a. Values of the viscosity obtained using this expression agree with those obtained in other experimental work and confirm the large discrepancy with theoretical calculations at low reduced temperatures.


Viscosity Experimental Data Experimental Work Compressibility Magnetic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Carless, H. E. Hall, and J. R. Hook,J. Low Temp. Phys. 50, 583 (1982).Google Scholar
  2. 2.
    H. Højgaard Jensen, H. Smith, P. Wölfle, K. Nagai, and T. Maack Bisgaard,J. Low Temp. Phys. 41, 473 (1980).Google Scholar
  3. 3.
    J. P. Eisenstein, G. W. Swift, and R. E. Packard,Physica,108B, 1061 (1981).Google Scholar
  4. 4.
    Y. A. Ono, J. Hara, and K. Nagai,J. Low Temp. Phys. 48, 167 (1982).Google Scholar
  5. 5.
    I. M. Khalatnikov,An Introduction to the Theory of Superfluidity (W. A. Benjamin, New York, 1965), Chapters 8 and 9.Google Scholar
  6. 6.
    M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (Dover, New York, 1965), Chapter 9.Google Scholar
  7. 7.
    C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,J. Low Temp. Phys. 42, 1076 (1980).Google Scholar
  8. 8.
    T. A. Alvesalo, H. K. Collan, M. T. Loponen, O. V. Lounasmaa, and M. C. Veuro,J. Low Temp. Phys. 19, 1 (1975).Google Scholar
  9. 9.
    J. C. Wheatley,Rev. Mod. Phys. 185, 373 (1969).Google Scholar
  10. 10.
    T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).Google Scholar
  11. 11.
    P. Wölfle, inProgress in Low Temperature Physics, Vol. VIIa (North-Holland, Amsterdam, 1978), Chapter 3.Google Scholar
  12. 12.
    R. Kronig and A. Thellung,Physica 16, 678 (1950).Google Scholar
  13. 13.
    S. J. Putterman,Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974), Section 28.Google Scholar
  14. 14.
    D. J. Fisk, Ph.D. Thesis, Manchester University (1972).Google Scholar
  15. 15.
    P. Wölfle and D. Einzel,J. Low Temp. Phys. 32, 39 (1978), D. Einzel, Ph.D. Thesis, Technische Universität München (1980).Google Scholar
  16. 16.
    J. C. Wheatley inProgress in Low Temperature Physics, Vol. VIIa (North-Holland, Amsterdam, 1978), Chapter 1.Google Scholar
  17. 17.
    G. Eska, K. Neumaier, W. Schoepe, K. Uhlig, and W. Wiedemann, to be published.Google Scholar
  18. 18.
    B. Mühlschlegel,Z. Phys. 155, 313 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • D. C. Carless
    • 1
  • H. E. Hall
    • 1
  • J. R. Hook
    • 1
  1. 1.Physics DepartmentManchester UniversityManchesterEngland

Personalised recommendations