Journal of Low Temperature Physics

, Volume 80, Issue 3–4, pp 161–172 | Cite as

Activated flux creep in layered high-temperature superconductors

  • B. I. Ivlev
  • N. B. Kopnin


We study thermally activated flux creep in layered superconductors in the case when the magnetic field is parallel to the layers and vortices move across the layers. We assume that the sample is without imperfections, so that the pinning is due to an interaction between vortices and the layered microstructure of the superconductors. The height of the energy barrier that vortices overcome during each activation process is calculated in the case when the vortex lattice period is commensurate with the interlayer spacing. This energy barrier depends on the transport current: it grows at small currents and goes to zero linearly whenj→j c wherej c is the depinning current.


Microstructure Magnetic Field Vortex Magnetic Material Lattice Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yeshurun and A. P. Malozemoff,Phys. Rev. Lett. 60, 2202 (1989).Google Scholar
  2. 2.
    T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak,Appl. Phys. Lett. 54, 763 (1989).Google Scholar
  3. 3.
    E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh,Phys. Rev. Lett. 62, 3093 (1989).Google Scholar
  4. 4.
    J. D. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E. G. Burkhardt,Phys. Rev. Lett. 62, 2044 (1989).Google Scholar
  5. 5.
    P. W. Anderson, Phys.Rev. Lett. 9, 309 (1962).Google Scholar
  6. 6.
    M. Tachiki and S. Takahashi,Solid State Commun. 70, 291 (1989).Google Scholar
  7. 7.
    B. I. Ivlev and N. B. Kopnin,Pis'ma Zh. Eksp. Teor. Fiz. 49, 678 (1989).Google Scholar
  8. 8.
    B. I. Ivlev and N. B. Kopnin,J. Low Temp. Phys. 77, 413 (1989).Google Scholar
  9. 9.
    W. E. Lawrence and S. Doniach, inProceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, 1970, E. Kanda, ed. (Academic Press, Tokyo, 1971), p. 361.Google Scholar
  10. 10.
    R. A. Klemm, A. Luther, and M. R. Bleasley,Phys. Rev. B 12, 877 (1975).Google Scholar
  11. 11.
    L. P. Gor'kov and N. B. Kopnin,Usp. Fiz. Nauk 156, 117 (1988).Google Scholar
  12. 12.
    E. H. Brandt,J. Low Temp. Phys. 26, 709 (1977).Google Scholar
  13. 13.
    V. G. Kogan and L. J. Campbell,Phys. Rev. Lett. 62, 1552 (1989).Google Scholar
  14. 14.
    B. I. Ivlev and V. I. Mel'nikov,Phys. Rev. B 36, 6889 (1987).Google Scholar
  15. 15.
    V. L. Pokrovsky and A. L. Talapov,Zh. Eksp. Teor. Fiz. 75, 1151 (1978).Google Scholar
  16. 16.
    P. Martinoli, O. Daldini, C. Leemann, and E. Stocker,Solid State Commun. 17, 205 (1975).Google Scholar
  17. 17.
    D. Nelson and H. S. Seung,Phys. Rev. B 39, 9153 (1989).Google Scholar
  18. 18.
    P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop,Phys. Rev. Lett. 61, 1666 (1988).Google Scholar
  19. 19.
    L. J. Swartzengruber, A. Roitburg, D. L. Kaiser, F. W. Gayle, and L. H. Bennett,Phys. Rev. Lett. 64, 483 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • B. I. Ivlev
    • 1
  • N. B. Kopnin
    • 1
  1. 1.L. D. Landau Institute for Theoretical Physics Academy of Sciences of the U.S.S.R.MoscowRussia

Personalised recommendations