Journal of Low Temperature Physics

, Volume 77, Issue 5–6, pp 429–448 | Cite as

High-resolution acoustic measurements in fluids and gases by a path length modulation technique

  • P. J. Hamot
  • H. H. Hensley
  • W. P. Halperin


An acoustic technique has been developed that permits high-resolution velocity measurements to be performed in liquids and gases under circumstances where the acoustic attenuation may become very large. This cavity resonance method has been demonstrated in cavities with lengths as small as 150 µm at acoustic frequencies up to 151 MHz. The acoustic path length is continuously adjusted by a piezoelectric bimorph controlled by feedback from a sensitive acoustic impedance spectrometer. The measurement of velocity then simply reduces to measurement of position of the bimorph, and this can be performed with high accuracy using a capacitance bridge. Absolute measurements of the attenuation of sound can also be performed with this arrangement. It is suggested that this approach will be useful for the study of collective excitations in quantum fluids.


Attenuation Path Length Acoustic Impedance Absolute Measurement Modulation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. E. Keen, P. W. Matthews, and J. Wilks,Phys. Lett. 5, 5 (1963).Google Scholar
  2. 2.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).Google Scholar
  3. 3.
    P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).Google Scholar
  4. 4.
    D. D. Osheroff, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 28, 885 (1972).Google Scholar
  5. 5.
    D. M. Lee and R. C. Richardson, inThe Physics of Liquid and Solid Helium, Part II, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), chap. 4.Google Scholar
  6. 6.
    O. Avenel, L. Piche, W. M. Saslow, E. Varoquaux, and R. Combescot,Phys. Rev. Lett. 47, 803 (1981).Google Scholar
  7. 7.
    B. S. Shivaram, M. W. Meisel, B. K. Sarma, W. P. Halperin, and J. B. Ketterson,J. Low Temp. Phys. 63, 57 (1986).Google Scholar
  8. 8.
    J. B. Ketterson, M. W. Meisel, B. S. Shivaram, B. K. Sarma, and W. P. Halperin, inProceedings IEEE Ultrasonics Symposium, (1983), p. 1074.Google Scholar
  9. 9.
    W. P. Halperin and E. Varoquaux, inHelium Three, W. P. Halperin and L. Pitaevskii, eds. (North-Holland, New York), to be published.Google Scholar
  10. 10.
    D. B. Mast, Ph.D. Thesis, Northwestern University, Evanston, Illinois, unpublished (1982).Google Scholar
  11. 11.
    B. S. Shivaram, M. W. Meisel, B. K. Sarma, D. B. Mast, W. P. Halperin, and J. B. Ketterson,Phys. Rev. Lett. 49, 1646 (1982).Google Scholar
  12. 12.
    W. H. Keesom, inHelium, (Elsevier, New York, 1942), chap. 4, p. 240.Google Scholar
  13. 13.
    K. R. Atkins and R. A. Stasior,Can. J. Phys. 31, 1156 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • P. J. Hamot
    • 1
  • H. H. Hensley
    • 1
  • W. P. Halperin
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanston

Personalised recommendations