Advertisement

Journal of Paleolimnology

, Volume 14, Issue 1, pp 89–91 | Cite as

Radiocarbon ages of pre-bomb clams and the hard-water effect in Lakes Michigan and Huron

  • David K. Rea
  • Steven M. Colman
Note

Abstract

Five radiocarbon ages, all determined by accelerator mass spectrometry, have been obtained for two pre-bomb bivalves from Lake Michigan and one from Lake Huron. After correcting those ages for the fractionation of14C in calcite and for the radioactively inert CO2 in the atmosphere, we find residual ages, caused by the hard water effect, of about 250 years for Lake Michigan and 440 years for Lake Huron.

Keywords

Atmosphere Mass Spectrometry Calcite Fractionation Bivalve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson, L., 1993. Factors affecting14C ages of Iacustrine carbonates: Timing and duration of the last highstand in the Lahontan Basin, Quaternary Research 39: 163–174.Google Scholar
  2. Broecker, W. S. & A. F. Walton, 1959. The geochemistry of14C in freshwater systems. Geochim. Cosmochim. Acta 16: 15–38.Google Scholar
  3. Colman, S. M., G. A. Jones, R. M. Forester & D. S. Foster, 1990. Holocene paleoclimatic evidence and sedimentation rates from a core in southwestern Lake Michigan. J. Paleolimnol. 4: 269–284.Google Scholar
  4. Colman, S. M., R. M. Forester, R. L. Reynolds, D. S. Sweetkind, J. W. King, P. Gangemi, G. A. Jones, L. D. Keigwin & D. S. Foster, 1994a. Lake-level history of Lake Michigan for the past 12000 years: The record from deep lacustrine sediments. J. Great Lakes Res. 20: 73–92.Google Scholar
  5. Colman, S. M., L. D. Keigwin & R. M. Forester, 1994b. Two episodes of meltwater influx from glacial Lake Agassiz into the Lake Michigan basin and their climatic contrasts. Geology 22: 547–550.Google Scholar
  6. Graham, E. J. & D. K. Rea, 1980. Grain size and mineralogy of sediment cores from western Lake Huron. J. Great Lakes Res. 6: 129–140.Google Scholar
  7. Lewis, C. F. M. & T. W. Anderson, 1989. Oscillations of levels and cool phases of the Laurentian Great Lakes caused by inflows from the glacial Lakes Agassiz and Barlow-Ojibway. J. Paleolimnol. 2: 99–146.Google Scholar
  8. Mayle, F. E., A. J. Lavesque & L. C. Cwynar, 1993. Accelerator-mass-spectrometer ages for the Younger Dryas event in Atlantic Canada. Quat. Res. 39: 355–360.Google Scholar
  9. Rea, D. K., T. C. Moore, Jr., C. F. M. Lewis, L. A. Mayer, D. Dettman, A. J. Smith & D. M. Dobson, 1994a. Stratigraphy and paleolimnologic record of lower Holocene sediments in northern Lake Huron and Georgian Bay. Can. J. Earth Sci. 31: in press.Google Scholar
  10. Rea, D. K., T. C. Moore, Jr., T. W. Anderson, C. F. M. Lewis, D. M. Dobson, D. L. Dettman, A. J. Smith & L. A. Mayer, 1994b. Great Lakes paleohydrology: Complex interplay of glacial meltwater, lake levels and sill depths. Geology 22: 1059–1062.Google Scholar
  11. Stuiver, M. & G. W. Pearson, 1993. High-precision bidecadal calibration of the radiocarbon time scale, AD 1950–500 BC, and 2500 – 6000 BC. Radiocarbon, 35: 1–23.Google Scholar
  12. Stuiver, M. & P. D. Quay, 1981. Atmospheric14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Plan. Sci. Letters, 53: 349–362.Google Scholar
  13. Taylor, R. E., 1987. Radiocarbon Dating: An Archeological Perspective. Academic Press, Orlando.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • David K. Rea
    • 1
  • Steven M. Colman
    • 2
  1. 1.Department of Geological SciencesThe University of MichiganAnn Arbor
  2. 2.United States Geological SurveyWoods Hole

Personalised recommendations