Advertisement

Journal of Paleolimnology

, Volume 14, Issue 1, pp 49–67 | Cite as

An expanded weighted-averaging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes

  • Euan D. Reavie
  • Roland I. Hall
  • John P. Smol
Article

Abstract

Eighteen lakes were added to a published training set of 46 British Columbia (BC) lakes in order to expand the original range of total phosphorus (TP) concentrations. Canonical correspondence analysis (CCA) was used to analyze the relationship between diatom assemblages and environmental variables. Specific conductivity and [TP] each explained significant (P≤0.05) directions of variance in the distribution of the diatoms. The relationship between diatom assemblages and [TP] was sufficiently strong to warrant the development of a weighted-averaging (WA) regression and calibration model that can be used to infer past trophic status from fossil diatom assemblages.

The relationship between observed and inferred [TP] was not improved by the addition of more eutrophic lakes, however the [TP] range and the number of taxa used in the transfer function are now superior to the original model. Diatom species assemblages changed very little in lakes with TP concentrations greater than 85 µg 1−1, so we document the development of a model containing lakes with TP≤85 µg 1−1. The updated model uses 59 training lakes and covers a range of species optima from 6 to 41.9 µg 1−1 TP, and a total of 150 diatom taxa.

The updated inference model provided a more realistic reconstruction of the anthropogenic history of a highly eutrophic BC lake. The model can now be used to infer past nutrient conditions in other BC lakes in order to assess changes in trophic status.

Key words

diatoms eutrophication lake management paleolimnology British Columbia lakes phosphorus training sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbeti, M. D., 1992. Relationship between diatom assemblages and trophic variables: A comparison of old and new approaches. Can. J. Fish. aquat. Sci. 49: 1171–1175.Google Scholar
  2. Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia 253: 357–366.Google Scholar
  3. Beil, C. E., R. L. Taylor & G. A. Guppy, 1976. The biogeoclimatic zones of British Columbia. Davidsonia 7: 45–55.Google Scholar
  4. Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.Google Scholar
  5. Birks, H. J. B., S. Juggins & J. M. Line, 1990a. Lake surfacewater chemistry reconstructions from paleolimnological data. In B. J. Mason (ed), The surface water acidification program. Cambridge University Press, Cambridge, 313 pp.Google Scholar
  6. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990b. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. B 327: 263–278.Google Scholar
  7. Bradbury, J. P., 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J. Paleolim. 1: 115–131.Google Scholar
  8. Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.Google Scholar
  9. Cumming, B. F. & J. P. Smol, 1993a. Scaled chrysophytes and pH inference models: the effects of converting scale counts to cell counts and other species data transformations. J. Paleolim. 9: 147–153.Google Scholar
  10. Cumming, B. F. & J. P. Smol, 1993b. Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia 269/270: 179–196.Google Scholar
  11. Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the Environmental Monitoring and Assessment Program — Surface Waters (EMAP-SW). Envir. Monit. Assess. 31: 275–306.Google Scholar
  12. Dixit, S., B. F. Cumming, J. P. Smol & J. C. Kingston, 1992. Monitoring environmental changes in lakes using algal microfossils. In D. H. McKenzie, D. E. Hyatt & V. J. MacDonald (eds), Ecological Indicators Vol 2. Elsevier Applied Science Publishers, Amsterdam, 1567 pp.Google Scholar
  13. Dixit, S., A. S. Dixit & J. P. Smol, 1991. Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshwat. Biol. 26: 251–266.Google Scholar
  14. Fritz, S. C., J. C. Kingston & D. R. Engstrom, 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol. 3: 1–23.Google Scholar
  15. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  16. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data Analysis in Community and Landscape Ecology. Pudoc Wageningen, Wageningen, The Netherlands, 299 pp.Google Scholar
  17. Line, J. M., C. J. F. ter Braak & H. J. B. Birks, 1994. WACALIB version 3.3 — a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147–152.Google Scholar
  18. McQuaker, N. R., 1976. A laboratory manual for the chemical analysis of waters, wastewaters, sediments and biological tissues (2nd ed.). Department of Environment, Water Resources Service, The Province of British Columbia, 120 pp.Google Scholar
  19. Reavie, E. D., J. P. Smol & N. B. Carmichael, 1995. Post-settlement eutrophication histories of six British Columbia (Canada) lakes. Can. J. Fish. aquat. Sci. (submitted).Google Scholar
  20. Smith, M. A., 1990. The ecophysiology of epilithic diatom communities of acid lakes in Galloway, southwest Scotland. Phil. Trans. r. Soc., Lond. B 327: 251–256.Google Scholar
  21. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. J. aquat. Ecos. Health 1: 49–58.Google Scholar
  22. Stockner, J. G. & T. G. Northcote, 1974. Recent limnological studies of Okanagan Basin lakes and their contribution to comprehensive water resource planning. J. Fish. Res. Bd Can. 31: 955–976.Google Scholar
  23. Ter Braak, C. J. F., 1988. CANOCO — A FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal component analysis, and redundancy analysis (version 2.1). Institute of Applied Computer Science, Statistical Department Wageningen, 6700 AC Wageningen, The Netherlands. Technical Report LWA-88-02, Wageningen, 95 pp.Google Scholar
  24. Ter Braak, C. J. F., 1990a. CANOCO — version 3.10. Unpublished computer program, Agricultural Mathematics Group, 6700 AC Wageningen.Google Scholar
  25. Ter Braak, C. J. F., 1990b. Updated notes: CANOCO — version 3.10. Unpublished computer program, Agricultural Mathematics Group, 6700 AC Wageningen, 35 pp.Google Scholar
  26. Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1994. A paleolimnological assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quaternary International 20: 51–70.Google Scholar
  27. Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): new quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. aquat. Sci. (in press).Google Scholar
  28. Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.Google Scholar
  29. Wilson, S. E., B. F. Cumming & J. P. Smol, 1994. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity and paleoclimatic reconstructions. J. Paleolim. 12: 197–221.Google Scholar
  30. Woolliams, N. G., 1979. Cattle Ranch: The Story of the Douglas Lake Cattle Company. Douglas and McIntyre, Vancouver, 264 pp.Google Scholar
  31. Zar, J. H., 1984. Biostatistical Analysis (2nd ed.). Prentice-Hall Inc., Englewood Cliffs, NJ, 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Euan D. Reavie
    • 1
  • Roland I. Hall
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment & Research Lab (PEARL), Department of BiologyQueen's UniversityKingstonCanada

Personalised recommendations