Journal of Paleolimnology

, Volume 14, Issue 1, pp 23–47 | Cite as

Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling

  • A. F. Lotter
  • H. J. B. Birks
  • B. Zolitschka
Article

Abstract

A high-resolution pollen and diatom stratigraphy has been studied from late-glacial annually laminated sediments of Holzmaar (425 m a.s.l., Germany). The sediment sequence studied comprises 475 varves and includes two environmental perturbations of different type and duration: the short, abrupt deposition of the late Allerød tephra layer of the Laacher See volcano (LST, 11 000 yr B.P.), and the more gradual onset of the 'Younger Dryas climatic cooling.

Numerical analyses involving (partial) redundancy analyses in connection with Monte Carlo permutation tests suggest that the deposition of 78 mm of Laacher See Tephra had a statistically significant effect on the pollen stratigraphy (percentage and accumulation rates), most probably because of the proximity of the site to the volcano. The diatom accumulation rates also show a statistically significant change, whereas the diatom percentage data do not change significantly. The between-sample rates-of-change in both biostratigraphies are higher at and just after the LST event than at the transition to the Younger Dryas biozone. Sequence splitting of pollen and diatom accumulation rate data also shows a clustering of significant splits at the LST event. A close correlation between changes in the pollen and diatom percentage data for the investigated time-interval suggests a common underlying climatic signal, whereas the accumulation rates of both biostratigraphies behave more individualistically and show more short-term variability due, in part, to the inherent noise in the two data sets. Variance partitioning shows that the local pollen and diatom assemblage zones explain much of the variance in the data-sets. Statistical modelling using redundancy analysis shows that the changes in the diatom assemblages are best predicted by the Younger Dryas biozone and the main changes in the pollen stratigraphy (as represented by the first PCA axis of the pollen data).

The results suggest that the biostratigraphies studied at Holzmaar reflect generally stable systems which were disturbed by the deposition of the Laacher See Tephra. After a phase of recovery both systems again reached a new phase of stability prior to the long-term Younger Dryas climatic deterioration that perturbed the assemblages again. The very close and statistically significant parallelism between the major stratigraphical patterns in the pollen and diatom percentage data highlights the responses of the two biological systems to environmental perturbations at different temporal scales.

Key words

Younger Dryas pollen diatoms varves laminated sediment Laacher See Tephra Holzmaar rates of change sequence splitting variance partitioning redundancy analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abella, S. E. B., 1988. The effect of the Mt. Mazama ashfall on the planktonic diatom community of Lake Washington. Limnol. Oceanogr. 33: 1376–1385.Google Scholar
  2. Alley, R. B.et al. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362: 527–529.Google Scholar
  3. Ammann, B., 1989. Response times in bio- and isotope-stratigraphies to Late-Glacial climatic shifts — an example from lake deposits. Ecologae geologica Helvetica 82: 183–190.Google Scholar
  4. Ammann, B. & K. Tobolski, 1983. Vegetational development during the late-Würm at Lobsigensee (Swiss Plateau). Revue de Paléobiologie 2: 163–180.Google Scholar
  5. Ammann, B. & A. F. Lotter, 1989. Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18: 109–120.Google Scholar
  6. Baillie, M. G. L., 1994. Dendrochronology raises questions about the nature of the AD 536 dust-veil event. The Holocene 4: 212–217.Google Scholar
  7. Baillie, M. G. L. & M. A. R. Munro, 1988. Irish tree rings, Santorini and volcanic dust veils. Nature 332: 344–346.Google Scholar
  8. Baross, J. A., C. N. Dahm, A. K. Ward, M. D. Lilley & J. R. Sedell, 1982. Initial microbial response in lakes to the Mt St. Helens eruption. Nature 296: 49–52.Google Scholar
  9. Barsdate, R. J. & R. C. Dugdale, 1972. Effects of volcanic ashfall on chemical and sediment characteristics of two Alaskan lakes. J. Fish. Res. Bd. Can. 29: 229–236.Google Scholar
  10. Battarbee, R. W., 1986. Diatom analysis. In: Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester, 527–570.Google Scholar
  11. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  12. Bennett, K. D., S. Boreham, M. J. Sharp & V. R. Switsur, 1992. Holocene history of environment, vegetation and human settlement on Calta Ness, Lunnasting, Shetland. J. Ecol. 80: 241–273.Google Scholar
  13. Birks, H. J. B., 1986. Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to northwest Europe. In: Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 3–65.Google Scholar
  14. Birks, H. J. B., 1994. Did Icelandic volcanic eruptions influence the post-glacial vegetational history of the British Isles? Trends in Ecology and Evolution 9: 312–314.Google Scholar
  15. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, 317 pp.Google Scholar
  16. Birks, H. J. B. & J. M. Line, 1994. Sequence splitting of pollen accumulation rates from the Holocene and Devensian late-glacial of Scotland. Dissertationes Botanicae 234: 145–160.Google Scholar
  17. Birks, H. J. B. & A. F. Lotter, 1994. The impact of the Laacher See volcano (11 000 yr B.P.) on terrestrial vegetation and diatoms. J. Paleolimnol. 11: 313–322.Google Scholar
  18. Bogaard Van den, P. & H.-U. Schmincke, 1985. Laacher See Tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96: 1554–1571.Google Scholar
  19. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  20. Büchel, G., 1984. Die Maare im Vulkanfeld der Westeifel, ihr geophysikalischer Nachweis, ihr Alter und ihre Beziehung zur Tektonik der Erdkruste. PhD Dissertation, University of Mainz.Google Scholar
  21. Charles, D. F., J. P. Smol & D. R. Engström, 1994. Paleolimnological approaches to biological monitoring. In: Loeb, S. L. & Spacie, A. (eds.), Biological Monitoring of Aquatic Systems. CRC Press, Boca Raton, Florida. 233–293.Google Scholar
  22. Coope, G. R. 1977. Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (last) Cold Stage. Phil. Trans. R. Soc. Lond. B 280: 313–340.Google Scholar
  23. Cooper, D. W., 1968. The significance level in multiple tests made simultaneously. Heredity 23: 614–617.Google Scholar
  24. Dansgaard, W., H. B. Clausen, N. Gundestrup, C. U. Hammer, S. J. Johnsen, S.J. Kristindottir & Reeh, 1982. A new Greenland deep ice core. Science 218: 1273–1277.Google Scholar
  25. H. R. Delcourt, P. A. Delcourt & T. Webb, 1982. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat. Sci. Rev. 1: 153–175.Google Scholar
  26. Edmondson, W. T., 1984. Volcanic ash in lakes. The Northwest Environmental Journal 1: 139–150.Google Scholar
  27. Eicher, U. & U. Siegenthaler, 1976. Palynology and oxygen isotope investigations on Late Glacial sediment cores from Swiss lakes. Boreas 5: 109–117.Google Scholar
  28. Findley, R., 1981. Eruption of Mount St. Helens. National Geographic 159: 3–65.Google Scholar
  29. Firbas, F. 1949. Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Vol. 1. Fischer Verlag, Jena, 480 pp.Google Scholar
  30. Firbas, F., 1954. Die Synchronisierung der mitteleuropäischen Pollendiagramme. Danm. Geol. Unders. II, 80: 12–21.Google Scholar
  31. Gardiner, F. P. & R. L. Haedrich, 1978. Zonation in the deep benthic megafauna. Application of a general test. Oecologia 31: 311–317.Google Scholar
  32. Green, D. G., 1981. Time series and postglacial forest ecology. Quat. Res. 15: 265–277.Google Scholar
  33. Green, D. G., 1982. Fire and stability in the postglacial forests of southwest Nova Scotia. J. Biogeogr. 9: 29–40.Google Scholar
  34. Grimm, E. C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares. Computers and Geosciences 13: 13–35.Google Scholar
  35. Grimm, E.C. & G. L. Jacobson, 1992. Fossil-pollen evidence for abrupt climate changes during the past 18 000 years in eastern North America. Climate Dynamics 6: 179–184.Google Scholar
  36. Hajdas, I., S. D. Ivy, J. Beer, G. Bonani, D. Imboden, A. F. Lotter, M. Sturm & M. Sutter, 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12 00014C years BP. Climate Dynamics 9: 107–116.Google Scholar
  37. Hall, V. A., J. R. Pilcher & F. G. McCormac, 1994. Icelandic volcanic ash and the mid-Holocene Scots pine (Pinus sylvestris) decline in the north of Ireland: no correlation. The Holocene 4: 79–83.Google Scholar
  38. Harper, M. A., R. Howorth & M. McLeod, 1986. Late Holocene diatoms in Lake Poukawa: effects of airfall tephra and changes in depth. New Zeal. J. Mar. Freshwat. Res. 20: 107–118.Google Scholar
  39. Haworth, E. Y., 1976. Two late-glacial (late Devensian) diatom assemblage profiles from northern Scotland. New Phytol. 77: 227–256.Google Scholar
  40. Hickman, M. & M. A. Reasoner, 1994. Diatom response to late Quaternary vegetation and climate change, and to deposition of two tephras in an alpine and a sub-alpine lake in Yoho National Park, British Columbia. J. Paleolimnol. 11: 173–188.Google Scholar
  41. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  42. Hustedt, F., 1954. Die Diatomeenflora der Eifelmaare. Arch. Hydrobiol. 48: 451–496.Google Scholar
  43. Iversen, J., 1954. The Late-Glacial flora of Denmark and its relation to climate and soil. Danm. Geol. Unders. II, 80: 87–119.Google Scholar
  44. Iversen, J., 1964. Plant indicators of climate, soil, and other factors during the Quaternary. INQUA Report Warsaw 1961, 2: 421–428.Google Scholar
  45. Jacobson, G. L., 1988. Ancient permanent plots: sampling in paleovegetation studies. In: Huntley, B. & Webb, T. (eds.), Vegetation History, Kluwer, Dordrecht. 3–16.Google Scholar
  46. Jacobson, G. L. & R. H. W. Bradshaw, 1981. The selection of sites for paleovegetational studies. Quat. Res. 16: 80–96.Google Scholar
  47. Kaiser, K. F., 1989. Late Glacial reforestation in the Swiss Mittelland, as illustrated by Dättnau Valley. In: Rose, J. & Schlüchter, C. (eds.), Quaternary Type sections: Imagination or reality? Balkema, Rotterdam: 161–178.Google Scholar
  48. Kaiser, K. F., 1991. Tree-rings in Switzerland and other mountain regions: late glacial through Holocene. In: Frenzel, B. (ed.), Evaluation of climate proxy data in relation to the European Holocene. Palaeoclim. Res 6: 119–131.Google Scholar
  49. Kaiser, K. F., 1993. Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Ziegler Druck- und Verlags-AG, Winterthur, 203 pp.Google Scholar
  50. Kilham, P., 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16: 10–18.Google Scholar
  51. Klee, R., R. Schmidt & J. Müller, 1993. Alleröd diatom assemblages in prealpine hardwater lakes of Bavaria and Austria as preserved by the Laacher See eruption event. Limnologica 23: 131–143.Google Scholar
  52. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Teil 1–4. Süsswasserflora von Mitteleuropa. Band 4/1–4. G. Fischer Verlag, Stuttgart.Google Scholar
  53. Kurenkov, I. I., 1966. The influence of volcanic ashfall on biological processes in a lake. Limnol. Oceanogr. 11: 426–429.Google Scholar
  54. Leopold, E. B., R. Nickmann, J. I. Hedges & J. R. Ertel, 1982. Pollen and lignin records of late Quaternary vegetation, Lake Washington. Science 218: 1305–1307.Google Scholar
  55. Lotter, A., 1988. Paläoökologische und paläolimnologische Studie des Rotsees bei Luzern. Dissertationes Botanicae 124: 1–187.Google Scholar
  56. Lotter, A. F., 1991. Absolute dating of the late-glacial period in Switzerland using annually laminated sediments. Quat. Res. 35: 321–330.Google Scholar
  57. Lotter, A. F. & Hölzer, A., 1989. Spätglaziale Umweltverhältnisse im Südschwarzwald: Erste Ergebnisse paläolimnologischer und paläoökologischer Untersuchungen an Seesedimenten des Hirschenmoores. Carolinea 47: 7–14.Google Scholar
  58. Lotter, A. F. & H. J. B. Birks, 1993. The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. J. Quat. Sci. 8: 263–276.Google Scholar
  59. Lotter, A. F., U. Eicher, H. J. B. Birks, U. Siegenthaler, 1992a. Late-glacial climatic oscillations as recorded in Swiss lake sediments. J. Quat. Sci. 7: 187–204.Google Scholar
  60. Lotter, A. F., B. Ammann, J. Beer, I. Hajdas & M. Sturm, 1992b. A step towards an absolute time-scale for the late-glacial: annually laminated sediments from Soppensee (Switzerland). In: Bard, E. & Broecker, W. (eds.) The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I 2: 45–68.Google Scholar
  61. Lotter, A. F., B. Ammann & M. Sturm, 1992c. Rates of change and chronological problems during the late-glacial period. Climate Dynamics 6: 233–239.Google Scholar
  62. Lotter, A. F. & A. Hölzer, 1994. A high-resolution late-glacial and early Holocene environmental history of Rotmeer, southern Black Forest (Germany). Dissertationes Botanicae 234: 365–388.Google Scholar
  63. MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.Google Scholar
  64. Mack, R. N., 1981. Initial effects of ashfall from Mount St. Helens on vegetation in eastern Washington and adjacent Idaho. Science 213: 537–539.Google Scholar
  65. Maher, L. J., 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32: 153–191.Google Scholar
  66. Mangerud, J., S. T. Andersen, B. E. Berglund, B.E., & J. J. Donner, 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3: 109–128.Google Scholar
  67. Newnham, R. M. & D. J. Lowe, 1991. Holocene vegetation and volcanic activity, Auckland Isthmus, New Zealand. J. Quat. Sci. 6: 177–193.Google Scholar
  68. Odgaard, B. V., 1994. The Holocene vegetation history of northern West Jutland, Denmark. Opera Botanica 123: 1–171.Google Scholar
  69. O'Sullivan, P. E., 1983. Annually-laminated lake sediments and the study of Quaternary environmental changes — a review. Quat. Sci. Rev. 1: 245–313.Google Scholar
  70. Peglar, S. M., 1993. The mid-HoloceneUlmus decline at Diss Mere, Norfolk, U.K.: a year-by-year pollen stratigraphy from annual laminations. The Holocene 3: 1–13.Google Scholar
  71. Pennington, W., 1986. Lags in adjustment of vegetation to climate caused by the pace of soil development: evidence from Britain. Vegetatio 67: 105–118.Google Scholar
  72. Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.Google Scholar
  73. Prentice, I. C., 1985. Pollen representation, source area, and basin size: towards a unified theory of pollen analysis. Quat. Res. 23: 76–86.Google Scholar
  74. Prentice, I. C., 1988. Records of vegetation in time and space: the principles of pollen analysis. In: Huntley, B. & Webb, T. (eds.), Vegetation History. Kluwer, Dordrecht. 17–42.Google Scholar
  75. Rawlence, D. J., 1988. The post-glacial diatom history of Splan Lake, New Brunswick. J. Paleolimnol. 1: 51–60.Google Scholar
  76. Roszanski, K., T. Goslar, M. Dulinski, T. Kuc, M. F. Pazdur & A. Walanus, 1992. The late glacial-Holocene transition in Central Europe derived from isotope studies of laminated sediments from Lake Gosciaz (Poland) In: Bard, E. & Broecker, W. (eds.) The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I 2: 69–80.Google Scholar
  77. Round, F. E., 1957. The late-glacial and post-glacial diatom succession in the Kentmere valley deposit. New Phytol. 56: 98–126.Google Scholar
  78. Saarnisto, M. 1986. Annually laminated lake sediments. In: Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 343–370.Google Scholar
  79. Schneider, R. & K. Tobolski, 1985. Lago di Ganna — Late-Glacial and Holocene environments of a lake in the southern Alps. In: Lang, G. (ed.), Swiss lake and mire environments during the last 15 000 years. Dissertationes Botanicae 87: 229–271.Google Scholar
  80. Sissons, J. B., 1979. The Loch Lomond Stadial in the British Isles. Nature 280: 199–203.Google Scholar
  81. Smol, J. P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.Google Scholar
  82. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. int. Ver. Limnol. 23: 837–844.Google Scholar
  83. Straka, H., 1961. Pollenanalytische Untersuchungen spätglazialer Ablagerungen aus zwei Maaren westlich Gillenfeld (Vulkaneifel). Pollen Spores 3: 275–302.Google Scholar
  84. Straka, H., 1975. Die spätiquartäre Vegetationsgeschichte der Vulkaneifel. Beiträge zur Landespflege in Rheinland-Pfalz, Beiheft 3: 1–163.Google Scholar
  85. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.Google Scholar
  86. ter Braak, C. J. F. 1987. CANOCO — a FORTRAN program forcanonicalcommunityordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis. TNO Institute of Applied Computer Science, Statistics Dept., Wageningen, Report 87ITI A 11: 1–95.Google Scholar
  87. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricult. Math. Group, Wageningen, 35 pp.Google Scholar
  88. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecol. Res. 18: 271–317.Google Scholar
  89. Tobolski, K., 1985. Plant macrofossils from Lobsigensee. In: Lang, G. (ed.), Swiss lake and mire environments during the last 15 000 years. Dissertationes Botanicae 87: 140–143.Google Scholar
  90. Troels-Smith, J. 1955. Characterization of unconsolidated sediments. Danm. Geol. Unders. IV, 3: 1–73.Google Scholar
  91. Tsukada, M., 1972. The history of Lake Nojiri, Japan. Connecticut Academy of Arts and Sciences Transactions 44: 339–365.Google Scholar
  92. Usinger, H., 1982. Pollenanalytische Untersuchungen an spätglazialen und präborealen Sedimenten aus dem Meerfelder Maar (Eifel). Flora 172: 373–409.Google Scholar
  93. Usinger, H., 1984. Pollenanalytische Untersuchungen zum Alter des Meerfelder Maares und zur Vegetationsentwicklung in der Westeifel während der ausklingenden Eiszeit. In: Iron, G. & J. F. W. Negendank (eds.): Das Meerfelder Maar. Courier Forschungsinstitut Senckenberg 65: 49–66.Google Scholar
  94. Walker, D. & S. R. Wilson, 1978. A statistical alternative to the zoning of pollen diagrams. J. Biogeogr. 5: 1–21.Google Scholar
  95. Welten, M., 1982. Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern — Wallis. Denkschr. Schweiz. Naturf. Ges. 95: 1–104.Google Scholar
  96. Wissmar, R. C., A. H. Devol, A. E. Nevissi & J. R. Sedell, 1982a. Chemical changes of lakes within the Mount St. Helens blast zone. Science 216: 175–178.Google Scholar
  97. Wissmar, R. C., A. H. Devol, J. T. Staley & J. R. Sedell, 1982b. Biological responses of lakes in the Mount St. Helens blast zone. Science 216: 178–181.Google Scholar
  98. Wright, H. E., 1984. Sensitivity and response time of natural systems to climatic change in the late Quaternary. Quat. Sci. Rev. 3: 91–131.Google Scholar
  99. Zolitschka, B., 1990. Spätquartäre jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Documenta naturae 60: 1–226.Google Scholar
  100. Zolitschka, B., B. Haverkamp & J. F. W. Negendank, 1992. Younger Dryas oscillation — varve dated microstratigraphic, palynological and palaeomagnetic records from Lake Holzmaar, Germany. In: Bard, E. & Broecker, W. S. (eds.), The Last Deglaciation. NATO ASI Series I 2: 81–101.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. F. Lotter
    • 1
    • 2
  • H. J. B. Birks
    • 3
    • 4
  • B. Zolitschka
    • 5
    • 6
  1. 1.Swiss Federal Institute for Environmental Science and Technology (EAWAG)DübendorfSwitzerland
  2. 2.Geobotanik, Universität BernBernSwitzerland
  3. 3.Botanical InstituteUniversity of BergenBergenNorway
  4. 4.Environmental Change Research CentreUniversity College LondonLondonUK
  5. 5.Fachbereich VI, GeologieUniversität TrierTrierGermany
  6. 6.GeoForschungsZentrumPotsdamGermany

Personalised recommendations