Journal of Paleolimnology

, Volume 14, Issue 3, pp 241–252 | Cite as

Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22–24°S

  • Martin Grosjean
  • Mebus A. Geyh
  • Bruno Messerli
  • Ueli Schotterer


Precipitation rates in the Atacama Altiplano 22–24°S were 400–500 mm yr−1 during late glacial and early Holocene times as opposed to 200 mm yr−1 today. This humid phase (Tauca phase) was likely due to strengthened tropical (monsoonal) circulation, which brought continental moisture to the Atacama Altiplano. The lake level of Laguna Lejía (23°30′S, 4350 m) at that time was up to 25 m higher than it is today. Mg/Ca and Sr/Ca data from lake sediments show that, what today is a highly saline lake was a freshwater lake at that time. Seasonally-laminated calcareous sediments were deposited between 13 500 and <10 400 yr B.P. indicating the maximum of the humid phase. Climatic changes in the past are important for current groundwater resources.14C and3H data from lake-, ground- and well water suggest that modern groundwater formation (i.e. water <40 years) in the Altiplano is very limited under current arid conditions. We conclude that significant amounts of the water resources in this area originated during the time of the late-glacial and early Holocene humid climate. Tritium data from snow samples show that the moisture in the Altiplano at 22–24°S is mainly of continental origin, whereas precipitation from the westerlies hardly contributes to the water supply in this area. This precipitation pattern matches the paleodata, and we suggest that current precipitation formation may provide an analogue framework for late-glacial circulation in this area.

Key words

fossil groundwater reservoir effect seasonally-laminated sediments subtropical Andes paleomonsoon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aravena, R., H. Peña, A. Grilli, O. Suzuki & M. Mordeckai, 1989. Evolucion isotopica de las lluvias y origen de las masas de aire en el Altiplano chileno. IAEA-TECDOC-502: 129–142.Google Scholar
  2. Baied, C. A. & J. C. Wheeler, 1993. Evolution of high Andean ecosystems: Environment, climate, and cultural change over the last 12 000 years in the Central Andes. Mountain Research and Development 13: 145–156.Google Scholar
  3. Bürgi, A., 1992. Aufbau und Betrieb eines Thermolumineszens-Labors zur Datierung quartaergeschichtlicher Proben. Ph.D. dissertation, University of Bern: 121 pp.Google Scholar
  4. Chivas, A. R., P. De Deckker & J. M. G. Shelly, 1986. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143: 135–142.Google Scholar
  5. Fritz, P., C. H. Silva, O. Suzuki & E. Salati, 1979. Isotope Hydrology in Northern Chile. IAEA-SM-228/26: 525–543.Google Scholar
  6. Fuenzalida, H. & J. Rutllant, 1986. Estudio sobre el origen del vapor de agua que precipita en el invierno altiplanico. Informe final. Universidad de Chile: 51 pp.Google Scholar
  7. Goldsmith, J. R. & D. L. Graf, 1958. Relation between lattice constants and composition of the Ca-Mg carbonates. Am. Mineralogist 43: 84–101.Google Scholar
  8. Grosjean, M., 1994. Paleohydrology of the Laguna Lejía (Northchilean Altiplano) and climatic implications for late-glacial times. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 89–100.Google Scholar
  9. Grosjean, M. & L. Nuñez, 1994. Late-glacial, Early and Middle Holocene Environments, Human Occupation and Resource Use in the Atacama (Northern Chile). Geoarchaeology 9: 271–286.Google Scholar
  10. IAEA/WMO, 1994. Network of Isotopes in Precipitation. NGDC/WDC-A Paleoenvironmental Data Sets. Boulder.Google Scholar
  11. Kessler, A., 1991. Zur Klimaentwicklung auf dem Altiplano seit dem letzten Pluvial. Freiburger Geographische Hefte 32: 141–148.Google Scholar
  12. Markgraf, V., 1989. Paleoclimates in Central and South America since 18 000 BP based on pollen and lake-level records. Quat. Sci. Rev. 8: 1–24.Google Scholar
  13. Messerli, B., M. Grosjean, G. Bonani, A. Bürgi, M. A. Geyh, K. Graf, K. Ramseyer, H. Romero, U. Schotterer, H. Schreier & M. Vuille, 1993. Climate Change and Natural Resource Dynamics of the Atacama Altiplano During the Last 18 000 Years: A Preliminary Synthesis. Mountain Research and Development 13: 117–127.Google Scholar
  14. Nuñez, L. A., 1992. Ocupacion arcaica en la Puna de Atacama: secuencia, movilidad y cambio. In B. J. Meggers (ed.), Prehistoria Sudamericana. Nuevas Perspectivas. Taraxacum, Washington: 283–307.Google Scholar
  15. Ruddiman, W. F. & J. E. Kutzbach, 1991. Plateaubildung und Klimaänderung. Spektrum der Wissenschaften 5/91: 114–125.Google Scholar
  16. Ochsenius, C., 1986. La glaciacion Puna durante el Wisconsin, deglaciacion y maximo lacustre en la tradicion Wisconsin-Holoceno y refugios de la megafauna postglaciales en la Puna y desierto de Atacama. Revista de Geografia Norte Grande 13: 29–58.Google Scholar
  17. O'Sullivan, P.E., 1983. Annually-laminated lake sediments and the study of quaternary environmental changes — a review. Quat. Sci. Rev. 2: 245–311.Google Scholar
  18. Tucker, M. E. & V. P. Wright, 1990. Carbonate Sedimentology. Blackwell Scientific Publications, Oxford: 481 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Martin Grosjean
    • 1
  • Mebus A. Geyh
    • 2
  • Bruno Messerli
    • 3
  • Ueli Schotterer
    • 4
  1. 1.Resource Management Science and Environmental StudiesUniversity of British ColumbiaVancouverCanada
  2. 2.State Geological Survey Lower SaxonyHannoverGermany
  3. 3.Department of GeographyUniversity of BernBernSwitzerland
  4. 4.Department of Environmental PhysicsUniversity of BernBernSwitzerland

Personalised recommendations