Advertisement

Journal of Low Temperature Physics

, Volume 76, Issue 1–2, pp 75–82 | Cite as

Interference of the Bloch oscillations in the Josephson junctions

  • B. I. Ivlev
  • Yu. N. Ovchinnikov
Article

Abstract

A quantum motion of a particle with dissipation in a titled periodic potential, adequate to the dynamics of the Josephson junctions, is considered. A concept of band motion of a particle, leading to the Bloch oscillations, holds at finite scales of time only, determined by dissipation. At large times there occurs an interference of the Bloch oscillations, resulting in vanishing of the resonance feature on the I–V characteristics under the action of the ac current with the frequency near ωB. There exist two relaxation times: γ1 is a width of a separate Stark and γ2 is the time of the mutual damping of the Bloch oscillation.

Keywords

Relaxation Time Magnetic Material Large Time Versus Characteristic Josephson Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. O. Caldeira and A. J. Leggett,Phys. Lett. 46, 211 (1981).Google Scholar
  2. 2.
    R. F. Voss and R. A. Webb,Phys. Rev. Lett. 47, 265 (1982).Google Scholar
  3. 3.
    V. Ambegaokar, U. Eckern, and G. Schon,Phys. Rev. Lett. 18, 1745 (1982).Google Scholar
  4. 4.
    A. I. Larkin and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 85, 1510 (1983).Google Scholar
  5. 5.
    S. Chakraverty,Phys. Rev. Lett. 49, 681 (1982).Google Scholar
  6. 6.
    A. Schmid,Phys. Rev. Lett. 51, 1506 (1983).Google Scholar
  7. 7.
    S. A. Bulgadaev,Zh. Eksp. Teor. Fiz. Pis'ma 39, 264 (1984).Google Scholar
  8. 8.
    Yu. Kagan and N. V. Prokof'ev,Zh. Eksp. Teor. Fiz. Pis'ma 45, 70 (1987).Google Scholar
  9. 9.
    K. Hida,Z. Phys. B 61, 223 (1985).Google Scholar
  10. 10.
    A. J. Leggett, S. Chakraverty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger,Rev. Mod. Phys. 59, 1 (1987).Google Scholar
  11. 11.
    H. Grabert, U. Weiss, and P. Hanggi,Phys. Rev. Lett. 52, 2193 (1984).Google Scholar
  12. 12.
    M. Buttiker,Phys. Rev. B 36, 3548 (1987).Google Scholar
  13. 13.
    M. P. A. Fisher and A. T. Dorsey,Phys. Rev. Lett. 54, 1609 (1985).Google Scholar
  14. 14.
    G. Schon and F. Guinea,Europhys. Lett. 1, 585 (1986).Google Scholar
  15. 15.
    A. I. Larkin and Yu. N. Ovchinnikov,J. Low Temp. Phys. 63, 317 (1986).Google Scholar
  16. 16.
    Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 94, 365 (1988).Google Scholar
  17. 17.
    B. I. Ivlev,Zh. Eksp. Teor. Fiz. 94, 350 (1988).Google Scholar
  18. 18.
    M. H. Devoret, J. H. Martinis, and J. Clarke,Phys. Rev. Lett. 55, 1908 (1985).Google Scholar
  19. 19.
    A. I. Larkin and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 91, 318 (1986).Google Scholar
  20. 20.
    B. I. Ivlev and V. I. Mel'nikov,Phys. Rev. Lett. 55, 1614 (1985).Google Scholar
  21. 21.
    K. S. Chow, D. A. Browne, and V. Ambegaokar,Phys. Rev. B 37, 1624 (1988).Google Scholar
  22. 22.
    K. K. Likharev and A. B. Zorin,J. Low Temp. Phys. 59, 347 (1985).Google Scholar
  23. 23.
    D. B. Averin and K. K. Likharev,Zh. Eksp. Teor. Fiz. 90, 737 (1986); D. B. Averin,Fiz. Niz. Temp. 13, (1987).Google Scholar
  24. 24.
    R. Feynmann and A. Hibbs,Quantum Mechanics and Path Integrals (1965).Google Scholar
  25. 25.
    Yu. N. Ovchinnikov and B. I. Ivlev, Instituto di Cibernetrica, C. H. R. Italy (1988), preprint.Google Scholar
  26. 26.
    B. I. Ivlev and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 95 (1989).Google Scholar
  27. 27.
    Yu. A. Bychkov and A. M. Dykhne,Zh. Eksp. Teor. Fiz. 48, 1168 (1965).Google Scholar
  28. 28.
    B. I. Ivlev and Yu. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. Pis'ma 48, (1988).Google Scholar
  29. 29.
    R. W. Koss and L. M. Lambert,Phys. Rev. B 5, 1479 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • B. I. Ivlev
    • 1
  • Yu. N. Ovchinnikov
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsAcademy of ScienceMoscowUSSR

Personalised recommendations