Journal of Low Temperature Physics

, Volume 60, Issue 3–4, pp 297–322 | Cite as

Theory of magnetoconductance near a superconducting transition in a weakly localized 2D metal

  • Wolfram Brenig


The magnetoconductivity corrections due to pair fluctuations aboveT c in a weakly disordered two-dimensional superconductor are calculated. Use of a systematic generation formalism makes it possible to obtain a number of diagrams, some of which have been investigated earlier. The validity of the previous results is extended to a larger range of temperatures, inelastic scattering rates, and magnetic fields. For appropriate limits in these variables certain results given in the literature are regained, in particular those of Larkin and of Santos and Abrahams on the Maki-Thompson process and theg4 contributions according to Fukuyama.


Magnetic Field Magnetic Material Large Range Systematic Generation Pair Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Al'tshuler, A. G. Aronov, A. I. Larkin, and D. E. Khmel'nitskii,Sov. Phys. JETP 54, 411 (1982).Google Scholar
  2. 2.
    H. Fukuyama,J. Phys. Soc. Japan 50, 3407 (1981).Google Scholar
  3. 3.
    A. F. Hebard and M. A. Paalanen, to be published.Google Scholar
  4. 4.
    G. Bergman,Phys. Rev. B 29, 6114 (1984).Google Scholar
  5. 5.
    A. I. Larkin,JETP Lett. 31, 219 (1980).Google Scholar
  6. 6.
    W. Brenig, M. Chang, E. Abrahams, and P. Wölfle,Phys. Rev. B 31 (11), to be published.Google Scholar
  7. 7.
    H. Fukuyama and E. Abrahams,Phys. Rev. B 27, 5976 (1983).Google Scholar
  8. 8.
    W. L. McLean and T. Tsuzuki,Phys. Rev. B 29, 503 (1984).Google Scholar
  9. 9.
    J. M. B. Santos and E. Abrahams,Phys. Rev. B 31, 172 (1985).Google Scholar
  10. 10.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, 1963).Google Scholar
  11. 11.
    L. G. Aslamazov and A. I. Larkin,Sov. Phys. Solid State 10, 875 (1968).Google Scholar
  12. 12.
    K. Maki,Prog. Theor. Phys. 40, 193 (1968).Google Scholar
  13. 13.
    R. S. Thompson,Phys. Rev. B 1, 327 (1970).Google Scholar
  14. 14.
    B. R. Patton,Phys. Rev. Lett. 27, 1273 (1971).Google Scholar
  15. 15.
    J. Keller and V. Korenman,Phys. Rev. B 5, 4367 (1972).Google Scholar
  16. 16.
    W. J. Skocpol and M. Tinkham,Rep. Prog. Phys. 38, 1049 (1975).Google Scholar
  17. 17.
    B. L. Al'tshuler, D. E. Khmel'nitskii, A. I. Larkin, and P. A. Lee,Phys. Rev. B 22, 5142 (1980).Google Scholar
  18. 18.
    G. Baym and L. P. Kadanoff,Phys. Rev. 124, 287 (1961).Google Scholar
  19. 19.
    G. Baym,Phys. Rev. 127, 1381 (1962).Google Scholar
  20. 20.
    A. Schmid,Z. Phys. 215, 210 (1968).Google Scholar
  21. 21.
    R. A. Ferrell,J. Low Temp. Phys. 1, 241 (1969).Google Scholar
  22. 22.
    K. D. Usadel,Z. Phys. 227, 260 (1969).Google Scholar
  23. 23.
    E. Abrahams, R. Prange, and M. J. Stephen,Physica 55, 230 (1971).Google Scholar
  24. 24.
    J. M. Gordon, C. J. Lobb, and M. Tinkham, inProceedings of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), Part I, p. 493.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Wolfram Brenig
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingWest Germany

Personalised recommendations