Advertisement

Journal of Low Temperature Physics

, Volume 48, Issue 3–4, pp 241–256 | Cite as

Calculation of the exchange integrals in solid3He

  • V. V. Avilov
  • S. V. Iordansky
Article

Abstract

Calculations are performed for two-, three-, and four-particle exchange in the quantum crystal of bcc solid3He. The quasiclassical approximation is used to find the tunneling path in the space of all atomic coordinates of the crystal. Effective potential energy is introduced by means of elasticity theory and the Lennard-Jones anharmonic interaction for exchanging atoms and their nearest neighbors. The two leading terms in the expansion of the logarithm of the exchange integrals in powers of the quasiclassical parameter given by the ratio of the zero oscillation amplitude to the lattice spacing are calculated. It is shown that all three exchange integrals are of the same order of magnitude.

Keywords

Potential Energy Magnetic Material Lattice Spacing Elasticity Theory Oscillation Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Roger, J. M. Delrieu, and J. H. Hetherington,J. Phys. Lett. (Paris) 41, L-139 (1980).Google Scholar
  2. 2.
    A. Landesman,J. Phys. (Paris)39, C6–1305 (1978).Google Scholar
  3. 3.
    D. D. Osheroff, M. C. Cross, and D. S. Fisher,Phys. Rev. Lett. 44, 792 (1980).Google Scholar
  4. 4.
    V. V. Avilov and S. V. Iordansky,Sov. Phys.—JETP 69, 1339 (1975).Google Scholar
  5. 5.
    R. Guyer,Solid State Phys. 23, 413 (1969).Google Scholar
  6. 6.
    S. Trickey, W. Kirk, and E. Adams,Rev. Mod. Phys. 44, 668 (1972).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon Press, London), Chapter 4.Google Scholar
  8. 8.
    T. R. Koehler, N. S. Gillis, and N. R. Werthamer,Phys. Rev. 165, 951 (1968).Google Scholar
  9. 9.
    D. S. Greywall, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum Press, New York, 1977), p. 323.Google Scholar
  10. 10.
    R. Wanner,Phys. Rev. A 3, 448 (1971).Google Scholar
  11. 11.
    D. S. Greywall and J. A. Munarin,Phys. Rev. Lett. 24, 1282 (1970).Google Scholar
  12. 12.
    D. S. Greywall,Phys. Rev. A 3, 2106 (1971).Google Scholar
  13. 13.
    J. Wilks,Liquid and Solid Helium (Clarendon Press, Oxford, 1967).Google Scholar
  14. 14.
    M. F. Panczyk and E. D. Adams,Phys. Rev. 187, 321 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. V. Avilov
    • 1
  • S. V. Iordansky
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsChernogolovkaUSSR

Personalised recommendations