Solar Physics

, Volume 157, Issue 1–2, pp 75–102 | Cite as

Dissipative MHD solutions for resonant AlfvÉn waves in 1-dimensional magnetic flux tubes

  • Marcel Goossens
  • Michail S. Ruderman
  • Joseph V. Hollweg


The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfvén waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfvén waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions forξ r , andP′ across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg forξ r , andP′ in terms of double integrals of Hankel functions of complex argument of order\(\frac{1}{3}\) with compact analytical solutions that allow a straightforward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpendicular to the magnetic field linesξ⊥ which enables us to determine the dominant dynamics of resonant Alfvén waves in dissipative MHD.


Magnetic Field Magnetic Flux Physical Interpretation Flux Tube Jump Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appert, K., Gruber, R., and Vaclavik, J.: 1974,Phys. Fluids 17, 1471.Google Scholar
  2. Boris, J. P.: 1968, ‘Resistively Modified Normal Modes of an Inhomogeneous Incompressible Plasma’, Ph.D. Thesis Princeton University, UMI Dissertation Services, Ann Arbor Michigan, p. 172.Google Scholar
  3. Cally, P. S. and Bogdan, T. J.: 1993,Astrophys. J. 402, 721.Google Scholar
  4. Chen, L. and Hasegawa, A.: 1974,Phys. Fluids 17, 1399.Google Scholar
  5. Goedbloed, J. P.: 1983,Lecture Notes on Ideal Magnetohydrodynamics, Rijnhuizen Report 83-145, p. 113.Google Scholar
  6. Goossens, M.: 1991, in E. R. Priest and A. W. Hood (eds;), ‘MHD Waves and Wave Heating in Non-Uniform Plasmas’,Advances in Solar System Magnetohydrodynamics, Cambridge University Press, Cambridge, p. 135.Google Scholar
  7. Goossens, M. and Hollweg, J. V.: 1993,Solar Phys. 145, 19.Google Scholar
  8. Goossens, M. and Poedts, S.: 1992,Astrophys. J. 384, 348.Google Scholar
  9. Goossens, M., Hollweg, J. V. and Sakurai, T.: 1992,Solar Phys. 138, 233.Google Scholar
  10. Grossman, W. and Smith, R.A.: 1988,Astrophys. J. 332, 476.Google Scholar
  11. Grossman, W. and Tataronis, J.: 1973,Z. Phys. 261, 217.Google Scholar
  12. Hasegawa, A. and Chen, L.: 1974,Phys. Fluids 17, 1924.Google Scholar
  13. Hollweg, J. V.: 1987a,Astrophys. J. 312, 880.Google Scholar
  14. Hollweg, J. V.: 1987b,Astrophys. J. 320, 875.Google Scholar
  15. Hollweg, J.V.: 1988,Astrophys. J. 335, 1005.Google Scholar
  16. Hollweg, J.V.: 1990,Computer Phys. Rep. 12, 205.Google Scholar
  17. Hollweg, J. V.: 1991, in P. Ulmschneider, E. R. Priest, and R. Rosner (eds.), ‘Alfvén Waves’,Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Berlin, p. 423.Google Scholar
  18. Hollweg, J. V. and Yang, G.: 1988,J. Geophys. Res. 93, 5423.Google Scholar
  19. Ionson, J. A.: 1978,Astrophys. J. 226, 650.Google Scholar
  20. Ionson, J. A.: 1985,Solar Phys. 100, 289.Google Scholar
  21. Kappraff, J. M. and Tataronis, J.: 1977,J. Plasma Physics 18, 209.Google Scholar
  22. Korn, G. and Korn, M.: 1961,Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York, p. 123.Google Scholar
  23. Kuperus, M., Ionson, J.A., and Spicer, D.: 1981,Ann. Rev. Astron. Astrophys. 19, 7.Google Scholar
  24. Lou, Y.-Q.: 1990,Astrophys. J. 350, 452.Google Scholar
  25. Mok, Y. and Einaudi, G.: 1985,J. Plasma Phys. 33, 199.Google Scholar
  26. Nayfeh, A. H.: 1981,Introduction to Perturbation Techniques, Wiley Interscience, New York, p. 123.Google Scholar
  27. Poedts, S. and Kerner, W.: 1992,J. Plasma Phys. 47, 139.Google Scholar
  28. Poedts, S., Goossens, M., and Kerner, W.: 1989a,Solar Phys. 123, 83.Google Scholar
  29. Poedts, S., Kerner, W., and Goossens, M.: 1989b,J. Plasma Physics 42, 27.Google Scholar
  30. Poedts, S., Goossens, M., and Kerner, W.: 1990a,Astrophys. J. 360, 279.Google Scholar
  31. Poedts, S., Goossens, M., and Kerner, W.: 1990b,Computer Phys. Comm. 59, 75.Google Scholar
  32. Sakurai, T., Goossens, M., and Hollweg, J.V.: 1991a,Solar Phys. 133, 227.Google Scholar
  33. Sakurai, T., Goossens, M., and Hollweg, J.V.: 1991b,Solar Phys. 133, 247.Google Scholar
  34. Spruit, H. C. and Bogdan, T. J.: 1992,Astrophys. J. 391, L109.Google Scholar
  35. Stenuit, H., Poedts, S., and Goossens, M.: 1993,Solar Phys. 147, 13.Google Scholar
  36. Tataronis, J. and Grossmann, W.: 1973,Z. Phys. 261, 203.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Marcel Goossens
    • 1
  • Michail S. Ruderman
    • 1
    • 3
  • Joseph V. Hollweg
    • 2
  1. 1.Centre for Plasma AstrophysicsK.U. LeuvenHeverleeBelgië
  2. 2.Space Science Center, Institute for the Study of Earth, Oceans and SpaceUniversity of New HampshireUSA
  3. 3.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations