Solar Physics

, Volume 157, Issue 1–2, pp 51–73 | Cite as

New absolute measurements of the solar spectrum 310–685 nm

  • K. A. Burlov-Vasiljev
  • E. A. Gurtovenko
  • Yu. B. Matvejev


During 1986–1989 at the high-altitude station on the Peak Terskol, Caucasus (h = 3000 m) absolute measurements of the solar disk-centre intensity were performed. The observations were carried out with the specialized solar telescope (D = 23 cm,F = 3 m) and grating spectrometer (F = 2 m, grating 140 × 150 mm, 600 grooves mm−1). The ribbon tungsten lamps used for absolute calibration were calibrated to the USSR standard of spectral intensity and were also compared with the irradiance standard of the PMO/WRC (Davos, Switzerland), with the lamps used in the Alma-Ata Observatory (Kazakhstan) and in Simferopol University for absolute measurements of stellar spectra. Methods and apparatus were improving step by step during 1985–1988. Special care was paid to the study of all possible sources of errors, in particular to the method of correction for atmospheric extinction, to polarization properties of optical elements of the apparatus, and to establishing the most reliable absolute calibration system. Finally, the observations performed during 1989 utilized only the refined methods and apparatus. As a result, the absolute integrals of the solar disk-centre intensity for 1-nm wide spectral bands in the range 310–685 nm are available. We estimate the total error is 2.5% at 310 nm and 2.1% at 680 nm. The absolute irradiance for 5-nm wide spectral bands is also obtained. We compare our results with results by Neckel and Labs (1984), with the irradiance filter measurements performed in PMO/WRC and calibration of the Sun's spectral irradiance to the stellar irradiance standard Vega by Lockwood (1992). Our results show a systematic difference with data by Neckel and Labs in the near-ultraviolet. The results by Neckel and Labs are probably underestimated in this spectral range by 8%.


Kazakhstan Absolute Measurement Polarization Property Calibration System Spectral Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G. W.: 1973,Astrophysical Quantities, The Athlone Press, London.Google Scholar
  2. Aldeberg, A. and Virdefors, B.: 1979,Astron. Astrophys. Suppl. 36, 317.Google Scholar
  3. Arvesen, J. C., Griffin, R. N., and Pearson, B. D.: 1969,Appl. Optics 8, 2215.Google Scholar
  4. Burlov-Vasiljev, K. A., Vasiljeva, I. E., and Matvejev, Yu. B.: 1990,Kinematika i Fizika Neb. Tel. 6(6), 83 (in Russian).Google Scholar
  5. Glagolev, Yu. A.: 1970,Reference Book on Physical Parameters of the Atmosphere, Gidrometeoizdat, Leningrad (in Russian).Google Scholar
  6. Gushchin, G. P.: 1963,Study of the Atmospheric Ozone, Gidrometeoizdat, Leningrad (in Russian).Google Scholar
  7. Gushchin, G. P. and Vinogradova N. N.: 1983,Total Ozone in the Atmospheric, Gidrometeoizdat, Leningrad (in Russian).Google Scholar
  8. Hildner, W. A. (ed.): 1962,Astronomical Techniques, Ch. 8, University of Chicago Press, Chicago.Google Scholar
  9. Knyazeva, L. N. and Kharitonov, A. V.: 1990,Astron. Zh. 66, 583 (in Russian).Google Scholar
  10. Labs, H. and Neckel, D.: 1962,Z. Astrophys. 55, 269.Google Scholar
  11. Labs, H. and Neckel, D.: 1967,Z. Astrophys. 65, 133.Google Scholar
  12. Labs, H. and Neckel, D.: 1968,Z. Astrophys. 69, 1.Google Scholar
  13. Labs, H., Neckel, D., Simon, P. C,. and Thuillier, G.: 1987,Solar Phys. 107, 203.Google Scholar
  14. Lockwood, G. W., Tüg, H., and White, N. M.:Astrophys. J. 390, 668.Google Scholar
  15. Makarova, E. A. and Kharitonov, A. V.: 1972,Distribution of Energy in the Solar Spectrum and Solar Constant, Nauka, Moscow (in Russian).Google Scholar
  16. Makarova, E. A., Kharitonov, A. V., and Kazachevskaya, I. V.: 1991,Solar Flux, Nauka, Moscow (in Russian).Google Scholar
  17. Neckel, D. and Labs, H.: 1981,Solar Phys. 74, 231.Google Scholar
  18. Neckel, D. and Labs, H.: 1984,Solar Phys. 90, 205.Google Scholar
  19. Neckel, D. and Labs, H.: 1985,Solar Phys. 95, 229.Google Scholar
  20. Osipov, S. N.: 1987,Kinematika i Fizika Neb. Tel. 3(5), 54 (in Russian).Google Scholar
  21. Peyturaux, R.: 1968,Ann. Astrophys. 31, 227.Google Scholar
  22. Peyturaux, R.: 1978,Astron. Astrophys. 69, 305.Google Scholar
  23. Pjaskovskaya-Fesenkova, E. V.: 1957,Study of Scattered Light in Earth Atmosphere, Publishing House of USSR Academic of Sciences, Moscow (in Russian).Google Scholar
  24. Shaw, G. E.: 1982,Appl. Optics 21, 2006.Google Scholar
  25. Shaw, G. E. and Fröhlich, C.: 1979, in B. McCormac and B. Seliga (eds.),Solar-Terrestrial Influences on Weather and Climate, D. Reidel Publ. Co., Dordrecht, Holland, p. 69.Google Scholar
  26. Smith, E. and Gottlieb, D.: 1974,Space Sci. Rev. 16, 771.Google Scholar
  27. Terez, E. I.: 1985, in A. V. Morozhenko (ed.),Photometric and Polarimetric Study of Celestial Bodies, Naukova Dumka, Kiev, p. 55 (in Russian).Google Scholar
  28. Thekaekara, M. P., Krüger, R., and Duncan, C. H.: 1969,Appl. Optics 8, 1713.Google Scholar
  29. Thuillier, G. and Simon, P. C.: 1993, in ‘Program and Abstracts’,IAU Colloq. 143, 64.Google Scholar
  30. Thuillier, G., Goutail, G., Simon, P. al.: 1984,Science 225, 182.Google Scholar
  31. Wehrli, Ch.: 1992, in R. Donnelly (ed.),Proc. Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, Space Env. Laboratory, NOAA ERL, p. 54.Google Scholar
  32. White, O. R. (ed.): 1977,The Solar Output and its Variation, Associated University Press, Boulder, Colorado.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • K. A. Burlov-Vasiljev
    • 1
  • E. A. Gurtovenko
    • 1
  • Yu. B. Matvejev
    • 1
  1. 1.Main Astronomical ObservatoryAcademy of Sciences of the UkraineKievUkraine

Personalised recommendations