Solar Physics

, Volume 155, Issue 2, pp 391–400 | Cite as

The sector structure of the active longitudes in solar cycles

  • V. P. Mikhailutsa
  • V. V. Makarova


The longitudinal distributions of the polar faculae, bright K Ca+ points, and sunspot areas have been investigated in three-year intervals at the minima and maxima of the last five solar cycles in the rotation system which corresponds to the background magnetic field:T = 27.23 days (Mikhailutsa, 1994b). It has been shown that there were three specific features of the polar faculae and bright K Ca+ point longitudinal distributions: (1) The longitudes of maxima and minima of the distributions were approximately the same in the last five solar cycles. (2) There were predominantly two opposite longitudinal maxima and two opposite longitudinal minima in the distributions of each hemisphere. (3) The distributions of the northern and southern hemispheres were in opposite phase. The extremes of the sunspot area longitudinal distributions were preferentially between the longitudes of the polar facular extremes. The period of the sector structure rotation was defined more precisely:T = 27.227 ± 0.003 days. The results found can serve as an indication that there is a global foursector structure seated in the solar interior which plays a visible role in the polar facular and sunspot distributions.


Magnetic Field Southern Hemisphere Solar Cycle Opposite Phase Rotation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bumba, V. and Hejna, L.: 1990,The Dynamic Sun, Proc. of the 6th European Solar Meeting, Debrecen, p. 92.Google Scholar
  2. Bumba, V. and Howard, R.: 1965,Astrophys. J. 141, 1492.Google Scholar
  3. Dodson, H. W. and Hedeman, E. R.: 1969, in K. O. Kiepenheuer (ed.), ‘Structure and Development of Solar Active Regions’,IAU Symp. 35, 56.Google Scholar
  4. Dodson, H. W. and Hedeman, E. R.: 1971, in P. S. McIntosh and M. Dryer (eds.),Solar Activity Observations and Predictions, MIT Press, Boston, p. 19.Google Scholar
  5. Dodson, H. W. and Hedeman, E. R.: 1975,Solar Phys. 42, 121.Google Scholar
  6. Makarov, V. I., Makarova, V. V., and Sivaraman, K. R.: 1989,Solar Phys. 119, 45.Google Scholar
  7. Makarov, V. I., Makarova, V. V., Koutchmy, S., and Sivaraman, K. R.: 1988, in R. Altrock (ed.),Solar and Stellar Coronal Structure and Dynamics, NSO/Sacramento Peak Sunspot, New Mexico, p. 362.Google Scholar
  8. McIntosh, P. S. and Wilson, P. R.: 1985,Solar Phys. 97, 59.Google Scholar
  9. Mikhailutsa, V. P.: 1994a,Solar Phys. 151, 371.Google Scholar
  10. Mikhailutsa, V. P.: 1994b,Solar Phys., submitted.Google Scholar
  11. Mouradian, Z., Martres, M. J., and Soru-Escaut, I.: 1988,Astron. Astrophys. 199, 318.Google Scholar
  12. Schröter, E. H.: 1985,Solar Phys. 100, 141.Google Scholar
  13. Simon, P. A. and Legrand, J. P.: 1992,Solar Phys. 141, 391.Google Scholar
  14. Svalgaard, L.: 1975,Interplanetary Sector Structure 1947–1975, Stanford University Institute for Plasma Research, Report No. 648.Google Scholar
  15. Trellis, M.: 1971,Compt. Rend. Acad. Sci. Paris 272, 549, 1026.Google Scholar
  16. Vitinskij, J. I.: 1969,Solar Phys. 7, 210.Google Scholar
  17. Vitinskij, J. I., Ohl, A. I., and Sazonov, B. I.: 1976,Solntse i Atmosphera Zemli, Hidrometeoizdat, Leningrad, 351 pp. (in Russian).Google Scholar
  18. Waldmeier, M.: 1955,Ergebnisse und Probleme der Sonnenforschung, 2 Auflage, Leipzig, 389 pp.Google Scholar
  19. Wilcox, J. M. and Schatten, K. H.: 1967,Astrophys. J. 147, 364.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • V. P. Mikhailutsa
    • 1
  • V. V. Makarova
    • 1
  1. 1.Kislovodsk Solar Station of the Pulkovo ObservatoryKislovodskRussia

Personalised recommendations