Journal of Paleolimnology

, Volume 9, Issue 1, pp 41–54 | Cite as

Zoogeography and paleozoology of leeches, molluscs, and amphibians in Western Bonneville Basin, Utah, USA

  • Peter Hovingh


The artesian springs of Tule Valley are similar to those of adjacent Snake Valley and Fish Springs Flat based on conductivity and temperature. All three valleys support Ranidae amphibians and the leechErpobdella punctata. The artesian springs in Snake Valley and Fish Springs Flat contain six and two species of fish and contained up to 18 and 12 species of mollusk respectively, whereas Tule Valley artesian springs contain neither fish nor mollusks. The leechesHelobdella stagnalis, Glossiphonia complanata, andHaemopis grandis were found in Snake Valley whereasHelobdella triserialis, Theromyzon rude, andHaemopis marmorata were found in Tule Valley. These springs which were covered by Lake Bonneville to a depth of several hundred meters, 16 000 BP., became isolated after the paleolake desiccated 13 000 years BP. The marsh snailCatinella is found above the paleolake level in Snake and Tule Valley and has not penetrated to the valley floor habitats once covered by the paleolake, whereas another marsh snailOxyloma has penetrated into these habitats in Snake Valley. The leech and molluscan distributions in Tule, Snake and Fish Springs Valleys suggest that the paleolake did not allow for much movement among the valleys, and successful passive aerial transport has not occurred after the paleolake desiccation 13 000 years BP. Paleozoological models are proposed to explain the presence and absence of these species in Tule Valley. Both lateral movement (along paleolake shorelines) and vertical movement (to new habitats formed after the desiccation of the paleolake) by amphibians, mollusks and leeches is restricted in large terminal lakes and is species dependent in both spatial and temporal scales of the hydrological cycle.

Key words

amphibian mollusk leech zoogeography paleozoology Great Basin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson, L. V., D. R. Currey, R. I. Dorn, K. R. Lajoie, C. G. Oviatt, S. W. Robinson, G. I. Smith & S. Stine. 1990. Chronology of expansion and contraction of four Great Basin lake systems during the past 35 000 years. Palaeogeogr., Palaeoclimatol., Palaeoecol. 78:241–286.Google Scholar
  2. Benson, L., D. Currey, Y. Lao & S. Hostetler, 1992. Lakesize variations in the Lahontan and Bonneville basins between 13 000 and 9000 C yr B.P. Palaeogeogr., Palaeoclimatol., Palaeoecol. 95: 19–32.Google Scholar
  3. Blinn, D. W. & R. W. Davies, 1989. New distribution records for leeches (Hirudinoidea) in Arizona. Southwest. Nat. 34:431–432.Google Scholar
  4. Boag, D. A., 1986. Dispersal in pond snails: potential role of waterfowl. Can. J. Zool. 64: 904–909.Google Scholar
  5. Bolen, E. G., 1964. Plant ecology of spring-fed salt marshes in western Utah. Ecol. Mon. 34: 143–166.Google Scholar
  6. Bolke, E. L. & C. T. Sumsion, 1978. Hydrologic reconnaissance of the Fish Springs Flat area, Tooele, Juab, and Millard Counties, Utah. State of Utah Dept. Nat. Res. Tech. Publ. 64, 30 pp.Google Scholar
  7. Call, R. E., 1884. On the Quaternary and recent Mollusca of the Great Basin with descriptions of new forms. U.S. Geol. Sur. Bull. 11: 358–421.Google Scholar
  8. Chambers, S. M., 1980. Genetic divergence between populations ofGoniobasis (Pleuroceridae) occupying different drainage systems. Malacologia 20: 63–81.Google Scholar
  9. Currey, D. R., 1990. Quaternary palaeolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, U.S.A. Palaeogeogr., Palaeoclimatol., Palaeoecol. 76: 189–214.Google Scholar
  10. Currey, D. R., G. Atwood & D. R. Mabey, 1984. Major levels of Great Salt Lake and Lake Bonneville. Utah Geol. Min. Sur. Map 73.Google Scholar
  11. Currey, D. P. & C. G. Oviatt, 1985. Durations, average rates, and probable causes of Lake Bonneville expansions, stillstands, and contractions during the last deep-lake cycle, 32 000 to 10 000 years ago. In: P. A. Kay & H. F. Diaz (editors), Problems of and prospects for predicating Great Salt Lake levels. Cent. Public Affairs Adm., Univ. Utah, Salt Lake City: 9–24.Google Scholar
  12. Davies, R. W., L. R. Linton & F. J. Wrona, 1982. Passive dispersal of leeches (Hirudinoidea) by ducks. Freshwat. Invert. Biol.1: 40–44.Google Scholar
  13. Fautin, R. W., 1946. Biotic communities of northern desert shrub biome in western Utah. Ecol. Monog. 16: 251–310.Google Scholar
  14. Gates, J. S. & S. A. Kruer, 1981. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah. State of Utah Dept. Nat. Res. Tech. Publ. 71, 55 pp.Google Scholar
  15. Geary, D. H., 1992. An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization. Paleobiol. 18: 93–109.Google Scholar
  16. Glover, C. J. M., 1989. Fishes. In ‘Natural History of Dalhousie Springs’, ed. W. Zeidler & W. F. Ponder. South Australian Museum, Adelaide: 89–113.Google Scholar
  17. Gwynn, J. W., 1989. The saline resources of Utah. Utah Geol. Min. Sur. Notes 23: 21–31.Google Scholar
  18. Harrill, J. R., J. S. Gates & J. M. Thomas, 1988. Major ground-water flow systems in the Great Basin region of Nevada, Utah, and adjacent states. U.S.G.S. Hydrologic Invest. Atlas 694-C.Google Scholar
  19. Herrman, S. J. 1970. Systematics, distribution, and ecology of Colorado Hirudinea. Am. Midl. Nat. 83: 1–37.Google Scholar
  20. Hershler, R. & W. L. Pratt. 1990. A NewPyrgulopsis (Gastropoda: Hydrobiidae) from southeastern California, with a model for historical development of the Death Valley hydrographic system. Proc. Biol. Soc. Wash. 102: 279–299.Google Scholar
  21. Hovingh, P., 1993. Aquatic habitats, life history observations and zoogeographic considerations of the spotted frogRana pretiosa in Tule Valley, Utah. Great Basin Nat. 53: 168–179;Google Scholar
  22. Hovingh, P., 1992. Avifauna of Tule Valley, western Bonneville basin. Great Basin Nat. 52: 278–283.Google Scholar
  23. Hovingh, P., B. Benton & D. Bornholdt. 1985. Aquatic parameters and life history observations of the Great Basin Spadefoot Toad in Utah. Great Basin Nat. 45: 22–30.Google Scholar
  24. Hubbs, C. L. & R. R. Miller., 1948. The zoological evidence. The Great Basin, with emphasis on glacial and post-glacial times. Bull. Univ. Utah Biol. Ser. 38: 18–166.Google Scholar
  25. Hubbs, C. L., R. R. Miller & L. C. Hubbs, 1974. Hydrographic history and relict fishes of the north-central Great Basin. Mem. Calif. Acad. Sci. vol. VII, 259 pp.Google Scholar
  26. Johnson, J. E., 1986. Inventory of Utah crayfish with notes on current distribution. Great Basin Nat. 46: 625–631.Google Scholar
  27. Klemm, D. J., 1985. A guide to the Freshwater Annelida ‘Polychaeta, Naidid and Tubificid Oligochaeta, and Hirudinea) of North America. Kendall/Hunt Publ., Dubuque, Iowa, 198 pp.Google Scholar
  28. McCoy, W. D., 1987. Quaternary aminostratigraphy of the Bonneville Basin, western United States. Geol. Soc. Amer. Bull. 98: 99–112.Google Scholar
  29. Mifflin, M. D. & M. M. Wheat, 1979. Pluvial lakes and estimated pluvial climates of Nevada. Nevada Bureau of Mines and Geology Bull. 94. Mackay School of Mines, U. Nevada, Reno, 57 pp.Google Scholar
  30. Minckley, W. L., D. A. Hendrickson & C. E. Bond, 1986. Geography of western North American freshwater fishes: Description and relationships to intracontinental tectonism. In ‘The Zoogeography of North American Freshwater Fishes’, ed. C. H. Hocutt and E. O. Wiley. John Wiley & Sons, New York: 519–613.Google Scholar
  31. Osmundson, D. B., 1985. 1985 status survey of least chub (lotichthys phlegethontis) in desert springs of western Utah. Utah Div. Wildlife Res., 107 pp.Google Scholar
  32. Oviatt, C. G. 1988. Late Pleistocene and Holocene lake fluctuations in the Sevier Lake Basin, Utah, USA. J. Paleolimn. 1: 9–21.Google Scholar
  33. Oviatt, C. G., W. D. McCoy & R. G. Reider, 1987. Evidence for a shallow Early or Middle Wisconsin-Age lake in the Bonneville Basin, Utah. Quatern. Res. 27: 248–262.Google Scholar
  34. Owen, D. F., 1962.Helisoma anceps transported by a Giant Water Bug. Nautilus 75: 124–125.Google Scholar
  35. Ponder, W. F., 1989. Mollusca. ‘In Natural History of Dalhousie Springs’, ed. W. Zeidler & W. F. Ponder. South Australian Museum, Adelaide, 71–78.Google Scholar
  36. Ponder, W. F., R. Hershler & B. Jenkins, 1989. An endemic radiation of hydrobiid snails from artesian springs in northern South Australia: their taxonomy, physiology, distribution, and anatomy. Malacologia 31: 1–140.Google Scholar
  37. Rees, W. J., 1965. The aerial dispersal of mollusca. Proc. Malac. Soc. Lond. 36: 269–282.Google Scholar
  38. Reynoldson, T. B. & R. W. Davies. 1980. A comparative study of weight regulation inNephelopsis obscura andErphobdella punctata (Hirudinoidea). Comp. Biochem. Physiol. 66A: 711–714.Google Scholar
  39. Roscoe, E. J., 1955. Aquatic snails found attached to feathers of white-faced glossy ibis. Wilson Bull. 67: 66.Google Scholar
  40. Russell, R. H., 1971. Mollusca of Fish Springs, Juab County, Utah: Rediscovery ofStagnicola pilsbryi (Hemphill, 1980). Great Basin Nat. 31: 223–236.Google Scholar
  41. Sack, D., 1990. Quaternary geology-Tule Valley, west-central Utah. Utah Geol. Min. Sur. Map 124.Google Scholar
  42. Sawyer, R. T., 1986. Leech Biology and Behavior. Clarendon Press, Oxford. 3 vol, 1065 pp.Google Scholar
  43. Stephens, J. C., 1977. Hydrologic reconnaissance of the Tule Valley drainage basin, Juab and Millard Counties, Utah. State of Utah Dept. Nat. Res. Tech. Publ. 56, 37 pp.Google Scholar
  44. Taylor, D. W., 1985. Evolution of freshwater drainages and molluscs in western North America. In: C. J. Smiley (ed.), Late Cenozoic history of the Pacific Northwest. Am Assoc. Adv. Sci. Pac. Div., San Francisco: 265–321.Google Scholar
  45. Taylor, D. W., 1986. Status report on Fish Springs Pond Snail. Report to the U.S. Fish and Wildlife Service, 29 pp.Google Scholar
  46. Taylor, D. W. & R. C. Bright, 1987. Drainage history of the Bonneville Basin. In Cenozoic Geology of Western Utahsites for precious metal and hydrocarbon accumulations. Utah Geol. Assoc. Publ. 16: 239–256.Google Scholar
  47. Taylor, D. W., 1988. Aspects of freshwater mollusc ecological biogeography. Palaeogeog., Palaeoclimatol., Palaeoecol. 62: 511–576.Google Scholar
  48. White, D. S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc. 12: 61–69.Google Scholar
  49. Wilberg, D. E. & B. J. Stolp, 1985. Physical characteristics and chemical quality of selected springs in parts of Juab, Millard, Tooele, and Utah Counties, Utah. U.S.G.S. Water-Resource Investigations Report 85-4324, 39 pp.Google Scholar
  50. Woodruff, D. S., K. C. Staub, E. S. Upatham, V. Viyanant & H-C. Yuan, 1988. Genetic variation inOncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Phillipines are distinct species. Malacologia 29: 347–361.Google Scholar
  51. Workman, G. W., W. G. Workman, R. A. Valdez, W. F. Sigler & J. M. Henderson, 1979. Studies on the least chub in geothermal active areas of western Utah. Utah Div. Wildlife Res., 347 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Peter Hovingh
    • 1
  1. 1.Salt Lake CityUSA

Personalised recommendations