Solar Physics

, Volume 151, Issue 2, pp 351–370 | Cite as

Can we understand time scales of solar activity?

  • M. N. Kremliovsky


The dynamo theory of the solar cycle faces numerous difficulties with an explanation of the observed behavior of sunspot activity. In particular, there is an essential irregularity in the sequence of 11(22)-year cycles. In this paper we want to show how the complicated long-term evolution of solar activity can be understood within the framework of a simple model demonstrating low-dimensional chaotic behavior. According to this description we are able to give a definition for the periods of low activity (Global Minima), to describe how the transition to (from) a Global Minimum occurs and to show the role of the 11(22)-year cycle and its phase catastrophe. The explanations of the origin of the Gleissberg cycle and thousand-year variations of solar activity are given. In summary, the independence of the proposed scenario from the particular choice of model is shown. Thus one can formulate dynamics in the language of generalized instabilities which can aid the search for the underlying physical processes.


Simple Model Physical Process Solar Activity Solar Cycle Global Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aimanova, G. K. and Maharenko, N. G.: 1988,Astron. Tsirk No. 1533 (in Russian).Google Scholar
  2. Berge, P., Pomeau, Y., and Vidal, C.: 1984,Order within Chaos, John Wiley, New York.Google Scholar
  3. Blinov, A. V. and Kremliovskij, M. N.: 1992,Radiocarbon 34(2), 207.Google Scholar
  4. Broomhead, D. S. and King, G. P.: 1987,Physica 20D, 217.Google Scholar
  5. Cattaneo, F. and Vainshtein, S. I.: 1991,Astrophys. J. 376, L21.Google Scholar
  6. Gruzinov, A. V. and Diamond, P. H.: 1994,Phys. Rev. Letters, in press.Google Scholar
  7. Kremlevskii, M. N., Blinov, A. V., and Cheryakov, T. B.: 1992,Soviet Astron. Letters 18(6), 423.Google Scholar
  8. Kurths, J.: 1987, in M. Farkas (ed.),Proc. Int. Conf. Nonlinear Osccillations, Budapest, p. 664.Google Scholar
  9. Mundt, M. D., Maguire, W. B., and Chase, R. R. P.: 1991,J. Geophys. Res. 96, 1705.Google Scholar
  10. Ostriakov, V. M. and Usoskin, I. G.: 1990,Solar Phys. 127, 405.Google Scholar
  11. Packard, N., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S.: 1980,Phys. Rev. Letters 45, 712.Google Scholar
  12. Ruelle, D.: 1990,Proc. Roy. Soc. London 427A, 241.Google Scholar
  13. Stuiver, M. and Braziunas, T. F.: 1988, in F. R. Stephenson and A. V. Wolfendale (eds.),Secular Solar and Geomagnetic Variations in the Last 10 000 Years, Kluwer Academic Publishers, Dordrecht, Holland, p. 245.Google Scholar
  14. Suess, H. E.: 1978,Radiocarbon 20 (1), 1.Google Scholar
  15. Takens, F.: 1981,Lecture Notes in Mathematics 898, Springer-Verlag, p. 366.Google Scholar
  16. Waldmeier, M.: 1961,The Sunspot Activity in the Years 1610–1960, Schulthess and Co. AG, Zürich.Google Scholar
  17. Weiss, N. O., Cattaneo, F., and Jones, C. A.: 1984,Geophys. Astrophys. Fluid Dyn. 30, 305.Google Scholar
  18. Zeldovich, Ya. B. and Ruzmaikin, A. A.: 1983,Soviet Sci. Rev. 2, 333.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • M. N. Kremliovsky
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations