Concrete quantum logics with covering properties

  • Vladimir Müller
  • Pavel Pták
  • Josef Tkadlec
Article

Abstract

LetL be a concrete (=set-representable) quantum logic. Letn be a natural number (or, more generally, a cardinal). We say thatL admits intrinsic coverings of the ordern, and writeL∈C n , if for any pairA, B∈L we can find a collection {C i ∶ i∈I}, where cardI<n andC i ∈L for anyi∈I, such thatAB=∪ i∈l C i . Thus, in a certain sense, ifLC n , then “the rate of noncompatibility” of an arbitrary pairA,BL is less than a given numbern. In this paper we first consider general and combinatorial properties of logics ofC n and exhibit typical examples. In particular, for a givenn we construct examples ofL∈Cn+1\C n . Further, we discuss the relation of the classesC n to other classes of logics important within the quantum theories (e.g., we discover the interesting relation to the class of logics which have an abundance of Jauch-Piron states). We then consider conditions on which a class of concrete logics reduce to Boolean algebras. We conclude with some open questions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birkhoff, G., and von Neumann, J. (1936). The logic of quantum mechanics,Annals of Mathematics,37, 823–843.Google Scholar
  2. Bunce, L. J., Navara, M., Pták, P., and Wright, J. D. M. (1985). Quantum logics with Jauch-Piron states,Quarterly Journal of Mathematics (Oxford) (2),36, 261–271.Google Scholar
  3. Gudder, S. P. (1979).Stochastic Methods in Quantum Mechanics, North-Holland, New York.Google Scholar
  4. Jauch, J. (1968).Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  5. Navara, M., and Pták, P. (1989). Almost Boolean orthomodular posets,Journal of Pure and Applied Algebra,60, 105–111.Google Scholar
  6. Navara, M., and Tkadlec, J. (1991). Automorphisms of concrete logics,Commentationes Mathematicae Universitatis Carolinae,32, 15–25.Google Scholar
  7. Piron, C. (1976).Foundation of Quantum Physics, Benjamin, Reading, Massachusetts.Google Scholar
  8. Pták, P., and Pulmannová, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht.Google Scholar
  9. Pták, P., and Wright, J. D. M. (1985). On the concreteness of quantum logics,Aplikace Matematiky,30, 274–285.Google Scholar
  10. Rogalewicz, V. (1991). Jauch-Piron logics with finiteness conditions,International Journal of Theoretical Physics,30, 437–445.Google Scholar
  11. Tkadlec, J. (1991). A note on distributivity in orthoposets,Demonstratio Mathematica,24, 343–346.Google Scholar
  12. Tkadlec, J. (to appear). Partially additive measures and set representations of orthoposets.Google Scholar
  13. Varadarajan, V. S. (1968).Geometry of Quantum Theory I, Van Nostrand, Princeton, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Vladimir Müller
    • 1
  • Pavel Pták
    • 2
  • Josef Tkadlec
    • 2
  1. 1.Institute of MathematicsCzechoslovak Academy of SciencesPragueCzechoslovakia
  2. 2.Department of MathematicsTechnical University of PraguePragueCzechoslovakia

Personalised recommendations