Filters and supports in orthoalgebras

  • D. J. Foulis
  • R. J. Greechie
  • G. T. Rüttimann
Article

Abstract

An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as a “logic” or “proposition system” and, under a welldefined set of circumstances, its elements may be classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together to form a local filter, that is, a set that intersects every Boolean subalgebra in a filter. In this paper, we give a coherent account of the basic theory of Orthoalgebras, define and study filters, local filters, and associated structures, and prove a version of the compactness theorem in classical algebraic logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfsen, E., and Shultz, F. (1976). Non-commutative spectral theory for affine function spaces on convex sets,Memoirs of the American Mathematical Society,172.Google Scholar
  2. Beran, L. (1984).Orthomodular Lattices, Reidel/Academia, Dordrecht, Holland.Google Scholar
  3. Birkhoff, G., and von Neumann, J. (1936). The logic of quantum mechanics,Annals of Mathematics,37, 823–843.Google Scholar
  4. Cook, T. (1985). Banach spaces of weights on quasimanuals,International Journal of Theoretical Physics,24(11), 1113–1131.Google Scholar
  5. D'Andrea, A., and De Lucia, P. (1991). The Brooks-Jewett theorem on an Orthomodular lattice,Journal of Mathematical Analysis and Applications,154, 507–522.Google Scholar
  6. Foulis, D. (1962). A note on orthomodular lattices,Portugaliae Mathematica,21(1), 65–72.Google Scholar
  7. Foulis, D. (1989). Coupled physical systems,Foundations of Physics,7, 905–922.Google Scholar
  8. Foulis, D., and Randall, C. (1981). Operational statistics and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., Vol. 5, Wissenschaftsverlag, Bibliographisches Institut, Mannheim, pp. 21–28.Google Scholar
  9. Golfin, A. (1987). Representations and products of lattices, Ph.D. thesis, University of Massachusetts, Amherst, Massachusetts.Google Scholar
  10. Greechie, R., and Gudder, S. (1971). Is a quantum logic a logic?,Helvetica Physica Acta,44, 238–240.Google Scholar
  11. Greechie, R., and Gudder, S. (1973). Quantum logics, inContemporary Research in the Foundations and Philosophy of Quantum Theory, C. Hooker, ed., Reidel, Boston.Google Scholar
  12. Gudder, S. (1988).Quantum Probability, Academic Press, Boston.Google Scholar
  13. Hardegree, G., and Frazer, P. (1981). Charting the labyrinth of quantum logics, inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds., Ettore Majorana International Science Series, 8, Plenum Press, New York.Google Scholar
  14. Janowitz, M. (1963). Quantifiers on quasi-orthomodular lattices, Ph.D. thesis, Wayne State University.Google Scholar
  15. Jauch, J. (1968).Foundations of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  16. Kalmbach, G. (1983).Orthomodular Lattices, Academic Press, New York.Google Scholar
  17. Kläy, M., Randall, C., and Foulis, D. (1987). Tensor products and probability weights,International Journal of Theoretical Physics,26(3), 199–219.Google Scholar
  18. Lock, P., and Hardegree, G. (1984a). Connections among quantum logics, Part 1, Quantum prepositional logics,International Journal of Theoretical Physics,24(1), 43–53.Google Scholar
  19. Lock, P., and Hardegree, G. (1984b). Connections among quantum logics, Part 2, Quantum event logics,International Journal of Theoretical Physics,24(1), 55–61.Google Scholar
  20. Piron, C. (1964). Axiomatique quantique,Helvetica Physica Acta,37, 439–468.Google Scholar
  21. Piron, C. (1976).Foundations of Quantum Physics, A. Wightman, ed., Benjamin, Reading, Massachusetts.Google Scholar
  22. Ramsay, A. (1966). A theorem on two commuting observables,Journal of Mathematics and Mechancis,15(2), 227–234.Google Scholar
  23. Randall, C., and Foulis, D. (1979). New definitions and theorems, University of Massachusetts Mimeographed Notes, Amherst, Massachusetts, Autumn 1979.Google Scholar
  24. Randall, C., and Foulis, D. (1981a). Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., Vol. 5, Wissenschaftsverlag, Bibliographisches Institut, Mannheim, pp. 9–20.Google Scholar
  25. Randall, C., and Foulis, D. (1981b). What are quantum logics and what ought they to be?, inCurrent Issues in Quantum Logic, E. Beltrametti and B. van Fraassen, eds., Ettore Majorana International Science Series 8, Plenum Press, New York, pp. 35–52.Google Scholar
  26. Rüttimann, G. (1979). Non-commutative measure theory, Habilitationsschrift, University of Bern, Switzerland.Google Scholar
  27. Rüttimann, G. (1989). The approximate Jordan-Hahn decomposition,Canadian Journal of Mathematics,41(6), 1124–1146.Google Scholar
  28. Sasaki, U. (1954). On orthocomplemented lattices satisfying the exchange axiom,Hiroshima Japan University Journal of Science Series A,17(3), 293–302.Google Scholar
  29. Schindler, C. (1986). Decompositions of measures on orthologics, Ph.D. thesis, University of Berne, Switzerland.Google Scholar
  30. Svetlichny, G. (1986). Quantum supports and modal logic,Foundations of Physics,16(12), 1285–1295.Google Scholar
  31. Svetlichny, G. (1990). On the inverse FPR problem: Quantum is classical,Foundations of Physics,20(6), 635–650.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. J. Foulis
    • 1
  • R. J. Greechie
    • 2
    • 3
  • G. T. Rüttimann
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherst
  2. 2.Department of MathematicsKansas State UniversityManhattan
  3. 3.Department of MathematicsLouisiana Technical UniversityRuston
  4. 4.Department of Mathematics and StatisticsUniversity of BerneBerneSwitzerland

Personalised recommendations