Advertisement

Journal of Paleolimnology

, Volume 13, Issue 2, pp 169–178 | Cite as

Evaluation of210Pb dating in lake sediments using stable Pb,Ambrosia pollen, and137Cs

  • Jules M. Blais
  • Jacob Kalff
  • R. Jack Cornett
  • R. Douglas Evans
Article

Abstract

We used sediment chronology data from fourteen published studies of lake cores across much of North America and Scandinavia in order to make a large scale comparison of the different dating techniques. The uncertainty of210Pb derived dates was determined using common sediment event markers: the stable Pb rise, the137Cs rise, and theAmbrosia pollen rise. For all data combined, the 95% confidence intervals for the stable Pb rise and theAmbrosia rise, were approximately 30 years. These 95% confidence intervals are slightly higher than those derived by First-Order Error analysis performed by others on210Pb derived dates. When comparing the concordance of two210Pb models (CRS and CIC) against markers of known history, we found that the CRS model dates (constant rate of supply) had consistently better agreement than the CIC model dates (constant initial concentration). Major discrepancies between137Cs and210Pb were common, but were consistently more severe in sediments of soft water lakes pointing to an inability of sediments with low mineral content to ‘immobilize’ Cs.

Key words

constant initial concentration constant rate of supply 210Pb dating sediments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby, P. G., F. Oldfield, R. Thompson, P. Huttunen, 1979.210Pb dating of annually laminated sediments from Finland. Nature 280: 53–55.Google Scholar
  2. Appleby, P. G. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported lead-210 to the sediment. Catena 5: 1–8.Google Scholar
  3. Appleby, P. G. & F. Oldfield. 1992. Application of lead-210 to sedimentation studies. In Uranium Series Disequilibrium (eds) M. Ivanovich and R. S. Hamon. OUP: 731–778.Google Scholar
  4. Benoit, G. & H. F. Hemond, 1990.210Po and210Pb remobilization from lake sediments in relation to iron and manganese cycling. Envir. Sci. Technol. 24: 1224–1234.Google Scholar
  5. Binford, M. W., J. S. W. Kahl, S. A. Norton. 1993. Interpretation of210Pb profiles and verification of the CRS dating model in PIRLA project lake sediment cores. J. Paleolimnol. 9: 275–296.Google Scholar
  6. Binford, M. W., 1990. Calculation and uncertainty analysis of210Pb dates for PIRLA project lake sediment cores. J. Paleolimnol. 3: 253–267.Google Scholar
  7. Brunskill, G. J., S. D. Ludlam, T.-H. Peng, 1984. Fayetteville Green Lake, N.Y., U.S.A. (VIII). Mass balance for137Cs in water, varved and non-varved sediment. Chem. Geol. 44: 101–117.Google Scholar
  8. Charles, D. F., M. W. Binford, E. T. Furlong, R. A. Hites, M. J. Mitchell, S. A. Norton, F. Oldfield, M. J. Patterson, J. P. Smol, A. J. Uutala, J. R. White, D. R. Whitehead, R. J. Wise, 1990. Paleoecological investigation of recent lake acidification in the Adirondack Mountains. J. Paleolimnol. 3: 195–241.Google Scholar
  9. Davis, R. B., C. T. Hess, S. A. Norton, D. W. Hanson, K. D. Hoagland & D. S. Anderson, 1984.137Cs and210Pb dating of sediments from soft water lakes in New England (USA) and Scandinavia, a failure of137Cs dating. Chem. Geol. 44: 151–185.Google Scholar
  10. Dixit, S. S., A. S. Dixit & R. D. Evans, 1986. Paleolimnological study of LRTAP network lakes, Quebec region. Report prepared for the Department of Supply and Services Canada. Trent University, 53 pp.Google Scholar
  11. Dillon, P. J. & R. D. Evans, 1982. Whole-lake lead burdens in sediments of lakes in southern Ontario, Canada. Hydrobiol. 91: 121–130.Google Scholar
  12. Durham, R. W. & S. R. Joshi, 1980. The210Pb and137Cs profiles in sediment cores from lakes Matagami and Quevillon, Northwest Quebec, Canada. Can. J. Earth Sci. 17: 1746–1750.Google Scholar
  13. Edgington, D. N. & J. A. Robbins, 1976. Records of lead deposition in Lake Michigan sediments since 1800. Envir. Sci. Technol. 10: 266–274.Google Scholar
  14. Evans, R. D., 1991. The impact of sediment focusing on total residual210Pb: implications for choice of a dating model. Verh. int. Ver. Limnol. 24: 2335–2339.Google Scholar
  15. Evans, R. D. & F. H. Rigler, 1985. Long distance transport of anthropogenic lead as measured by lake sediments. Wat. Air Soil Pollut. 24: 141–151.Google Scholar
  16. Francis, C. W., F. S. Brinkley, 1976. Preferential adsorption of137Cs to micaceous minerals in contaminated freshwater sediment. Nature 260: 511–513.Google Scholar
  17. Frank, R., R. L. Thomas, H. E. Braun, D. L. Gross, T. T. Davies, 1981. Organochlorine insecticides and PCB in surficial sediments of lake Michigan. J. Great Lakes Res. 7:42–50.Google Scholar
  18. Guinasso, N. L. & D. R. Schink, 1975. Quantitative estimates of biological mixing rates in abyssal sediments. J. Geophys. Res. 80: 3032–3043.Google Scholar
  19. Haworth, E. Y. & J. W. G. Lund, 1984. Lake Sediments and Environmental History. University of Minnesota Press. Minneapolis, 405 pp.Google Scholar
  20. Hermansson, M. H., 1990.210Pb and137Cs chronology of sediments from small Arctic lakes. Geochim. Cosmochim. Acta 54: 1443–1451.Google Scholar
  21. Hermansson, M. H. & E. R. Christensen, 1991. Recent sedimentation in Lake Michigan. J. Great Lakes Res. 17: 33–50.Google Scholar
  22. Johansson, K., 1989. Metals in sediments of lakes in northern Sweden. Wat. Air Soil Pollut. 47: 441–455.Google Scholar
  23. Johnson, M. G., L. R. Culp & S. E. George, 1986. Temporal and spacial trends in metal loadings to sediments of the Turkey lakes, Ontario. Can. J. Fish. aquat. Sci. 43: 754–762.Google Scholar
  24. Kingston, J. C., R. B. Cook, R. G. Kreis, K. E. Camburn, S. A. Norton, P. R. Sweets, M. W. Binford, M. J. Mitchell, S. C. Schindler, L. C. K. Shane, G. A. King. 1990. Paleoecological investigation of recent lake acidification in the Northern Great Lakes. J. Paleolimnol. 4: 153–201.Google Scholar
  25. Norton, S. A., R. W. Bienert, M. W. Binford, J. S. Kahl, 1992. Stratigraphy of total metals in PIRLA sediment cores. J. Paleolimnol. 7: 191–214.Google Scholar
  26. Norton, S. A., P. J. Dillon, R. D. Evans, G. Mierle, J. S. Kahl, 1990. The history of atmospheric deposition of Cd, Hg, and Pb in North America: Evidence from lake and peat bog sediments. In Lindberg, S. E., A. L. Page, S. A. Norton (eds.) Sources, Deposition, and Canopy Interactions. Springer-Verlag, Vol. 3, 332 pp.Google Scholar
  27. Nriagu, J. O., 1990. The rise and fall of leaded gasoline. Sci. Tot. Environ. 92: 13–28.Google Scholar
  28. Nriagu, J. O., 1979. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279: 409–411.Google Scholar
  29. Oldfield, F. & P. G. Appleby, 1984. Empirical testing of210Pb-dating models for lake sediments. In Haworth, E. Y. and J. W. G. Lund (eds). Lake Sediments and Environmental History. University of Minnesota Press. Minneapolis, 405 pp.Google Scholar
  30. Robbins, J. A., 1978. Geochemical and geophysical application of radioactive lead isotopes. In ‘Biogeochemistry of Lead’, J. O. Nriagu (ed.) Elsevier. Amsterdam: 285–393.Google Scholar
  31. Robbins, J. A., D. N. Edgington, A. L. W. Kemp. 1978. Comparative210Pb,137Cs, and pollen geochronologies of sediments from Lake Ontario and Erie. Quat. Res. 10: 256–278.Google Scholar
  32. Robbins, J. A. & L. R. Herche, 1993. Models and uncertainty in210Pb dating of lake sediments. Verh. int. Ver. Limnol. 25: 217–222.Google Scholar
  33. Rowan, D. J., J. Kalff, J. B. Rasmussen, 1992. Profundal sediment organic content and physical character do not reflect lake trophic status, but rather reflect inorganic sedimentation and exposure. Can. J. Fish. aquat. Sci. 49: 1431–1438.Google Scholar
  34. Schut, P. H., R. D. Evans, W. A. Scheider, 1986. Variations in trace metal exports from small Canadian Shield watersheds. Wat. Air Soil Pollut. 28: 225–237.Google Scholar
  35. Sholkovitz, E. R., D. R. Mann, 1984. The porewater chemistry239,240Pu and137Cs in sediments of Buzzards Bay, Massachusetts. Geochim. Cosmochim. A. 48: 1107–1114.Google Scholar
  36. Swain, E. B., D. R. Engstrom, M. E. Brigham, T. A. Henning, P. L. Brezonik, 1992. Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257: 784–787.Google Scholar
  37. Sweets, P. R., R. W. Bienert, T. L. Crisman, M. W. Binford, 1990. Paleoecological investigations of recent lake acidification in Northern Florida. J. Paleolimnol. 4: 103–137.Google Scholar
  38. Walling, D. E. & H. Qingping, 1992. Interpretation of caesium −137 profiles in lacustrine and other sediments: the role of catchment derived inputs. Hydrobiology 235: 219–230.Google Scholar
  39. Wilkinson, L., 1989. SYSTAT: the system for statistics. SYSTAT Inc., Evanston, IL. 822 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jules M. Blais
    • 1
  • Jacob Kalff
    • 1
  • R. Jack Cornett
    • 2
  • R. Douglas Evans
    • 3
  1. 1.Dept. of BiologyMcGill UniversityMontrealCanada
  2. 2.Environmental ResearchChalk River Nuclear LabsChalk RiverCanada
  3. 3.Environmental and Resource Science Prog.Trent UniversityPeterboroughCanada

Personalised recommendations