Advertisement

Journal of Paleolimnology

, Volume 9, Issue 2, pp 179–188 | Cite as

Distribution coefficients of210Pb and210Po in laboratory and natural aquatic systems

  • K. Wang
  • R. J. Cornett
Article

Abstract

We have measured the distribution coefficient (Kd) of210Po and210Pb in laboratory systems and in natural freshwater systems. In the laboratory systems, an inverse relationship was observed between the particle concentration of sand or lake sediment, and the distribution coefficients of210Po and210Pb. The slope of the log-linearKdvs particle concentration relation is consistent with existingKd-particle concentration theories. These laboratory observations are consistent with similar measurements in two lakes. TheKd values of Po and Pb for the bottom sediment-pore water system with a high particle concentration were 10 to 100 times lower than those for dilute concentrations of particles suspended in the lake water. TheKd of210Pb in the sediments was >104 so that the diffusive transport of210Pb has only a small influence on the interpretation of210Pb concentration-depth profiles and the210Pb dating of these sediments.

Key words

distribution coefficient Kd 210Pb 210Po freshwater sediment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aston, S. R. & E. K. Duursma, 1973. Concentration effects on137Cs,65Zn,60Co and106Ru sorption by marine, with geochemical implications. Neth. J. Sea Res. 6: 225–240.Google Scholar
  2. Benoit, G. & H. F. Hemond, 1991. Evidence for diffusive redistribution of210Pb in lake sediments. Geochim. Cosmochim. Acta 55: 1963–1975.Google Scholar
  3. Benes, P. & V. Majer, 1980. Trace chemistry of aqueous solutions. Elsevier, New York.Google Scholar
  4. Champ, D. R., J. L. Young, D. E. Robertson & K. H. Abel, 1984. Chemical speciation of long-lived radionuclides in a shallow groundwater flow system. Wat. Pollut. Res. J. Can. 19: 35–54.Google Scholar
  5. Chant, L. A. & R. J. Cornett, 1991. Smearing of gravity core profiles in soft sediments. Limnol. Oceanogr. 36: 1492–1498.Google Scholar
  6. Chapra, S. C. & K. H. Reckhow, 1983. Engineering approaches to lake management. Vol. 2. Mechanistic modelling. Butterworth publishers, Boston MA, 492 pp.Google Scholar
  7. Cornett, R. J., L. A. Chant & D. Link, 1984. Sedimentation of210Pb in Laurentian Shield Lakes. Wat. Pollut. Res. J. Can. 19: 97–109.Google Scholar
  8. Cornett, R. J., L. A. Chant & R. D. Evans, 1989. Nickel diagenesis and partitioning in lake sediments. The Science of the Total Environment 87/88: 157–170.Google Scholar
  9. Di Toro, D. M., J. D. Mahony, P. R. Kirchgraber, A. L. O'Bryne, L. R. Pasquale & D. C. Piccirl, 1986. Effects of Nonreversibility, particle concentration, and ionic strength on heavy metal sorption. Envir. Sci. Technol. 20: 56–61.Google Scholar
  10. Duursma, E. K. & M. Cross, 1971. In ‘Radioactivity in the Marine Environment’; National Academy of Science: Washington, DC, 147 pp.Google Scholar
  11. Eakins, J. D. & R. T. Morrison, 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int. J. Appl. Rad. Isotopes. 29: 531–536.Google Scholar
  12. Friendlander, G., J. W. Kennedy & J. M. Miller, 1964. Nuclear and Radiochemistry. Wiley & Sons Inc., 555 pp.Google Scholar
  13. Havlik, B., 1970.226Ra content of water and plankton from the Chalk River area. AECL Research Report, AECL-3687.Google Scholar
  14. Hohl, H. & W. J. Stumm, 1976. Interaction of pb+2 with hydrous Al2O3. Colloid Interface Sci. 55: 281–288.Google Scholar
  15. Honeyman, B. D. & P. H. Santschi, 1989. A Brownian-pumping model for oceanic trace metal scavenging: Evidence from Th isotopes. J. mar. Res. 47: 951–992.Google Scholar
  16. Honeyman, B. D., L. S. Balistrieri & J. W. Murray, 1988. Oceanic trace metal scavenging: the importance of particle concentration. Deep-Sea Res. 35: 227–246.Google Scholar
  17. Imboden, D. M. & M. Stiller, 1982. The influence of radon diffusion on the210Pb distribution in sediments. J. Geophys. Res. 87C: 557–565.Google Scholar
  18. Jackson, R. E., K. J. Inch, R. J. Patterson, K. Lyon, T. Spoel, W. F. Merritt & B. A. Risto, 1980. Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories. NHRI Paper No. 7, Scientific Series No. 104, National Hydrology Research Institute, Inland Waters Directorate, Ottawa, Ontario.Google Scholar
  19. Jannasch, H. W., B. D. Honeyman, L. S. Balistrieri & J. W. Murray, 1988. Kinetics of trace element uptake by marine particles. Geochim. Cosmochim. Acta.52: 567–577.Google Scholar
  20. Joshi, S. R., R. C. McCrea, B. S. Shukla & J.-C. Roy, 1991. Partitioning and transport of lead-210 in the Ottawa River watershed. Wat. Air Soil Pollut. 59: 311–320.Google Scholar
  21. Li, Y. H., M. Burkhardt, M. Buchholtz, P. O'Hara & P. H. Santschi, 1984. Partition of radiotracers between suspended particles and seawater. Geochim. Cosmochim. Acta 48: 2011–2019.Google Scholar
  22. Li, Y. H. & S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38: 703–714.Google Scholar
  23. Merrit, W. F., 1975. Variation in trace element concentrations along the length of the Ottawa River. Can. J. Earth Sci. 12: 850–857.Google Scholar
  24. Nyffeler, U. P., P. H. Santschi & Y. H. Li, 1986. The relevance of scavenging kinetics to modelling of sediment-water interactions in natural waters. Limnol. Oceanogr. 31: 277–292.Google Scholar
  25. Oakley, S. M., P. O. Nelson & K. J. Williamson, 1981. Model of trace-metal partitioning in marine sediments. Envir. Sci. Technol. 15: 474.Google Scholar
  26. O'Connor, D. J. & J. P. Connolly, 1980. The effect of concentration of adsorbing solids on the partition coefficient. Wat. Res. 14: 1517–1523.Google Scholar
  27. Rapin, F., A. Tessier, P. G. C. Campbell & R. Carignan, 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Envir. Sci. Technol. 20: 836–840.Google Scholar
  28. Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In The Biogeochemistry of Lead in the Environment. J. O. Nriagu (ed.), Elsevier, Amsterdam.Google Scholar
  29. Robbins, J. A. & D. N. Edginton, 1975. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim. Acta 39: 285–304.Google Scholar
  30. Salim, R., 1983. Adsorption of lead on the suspended particles of river water. Wat. Res. 17: 423.Google Scholar
  31. Schell, W. R., T. H. Sibley, A. Nevissi & A. Sanchez, 1980. Distribution coefficients for radionuclides in aquatic environments. III. Adsorption and desorption studies of106Ru,137Cs,241Am,85Sr and237Pu in marine and freshwater systems. NTIS, Springfield, VA, NUREG/CR-0803.Google Scholar
  32. Standard Methods, 1971. Standard methods for the examination of water and wastewater. American Public Health Association, 679 pp.Google Scholar
  33. Talbot, R. W., 1981. Atmospheric fluxes and geochemistries of stable lead, lead-210 and polonium-210 in Crystal Lake, Wisconsin. Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin.Google Scholar
  34. Talbot, R. W. & W. A. Andren, 1984. Seasonal variations of210Pb and210Po concentrations in an oligotrophic lake. J. geophys. Res. 89: 2053–2063.Google Scholar
  35. Tessier, A., F. Rapin & R. Carignan, 1985. Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49: 183–194.Google Scholar
  36. Wang, K., 1991. Effect of concentration of particles on partition coefficients of heavy metals in freshwater systems. M. Sc. Theses. Trent University, 121 pp.Google Scholar
  37. Whitfield, M., 1974. Themodynamic limitations on the use of the platinum electrode in Eh measurements. Limnol. Oceanogr. 19: 857–865.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • K. Wang
    • 1
  • R. J. Cornett
    • 2
  1. 1.Watershed Ecosystems Graduate ProgramTrent UniversityPeterboroughCanada
  2. 2.AECL Research, Chalk River LaboratoriesChalk RiverCanada

Personalised recommendations