Journal of Paleolimnology

, Volume 9, Issue 2, pp 109–127 | Cite as

A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance

  • Peter R. Leavitt
Article

Abstract

Limnological surveys show that fossil pigment concentration is an accurate predictor of algal production. However, experimental and mass flux studies indicate that >90% of pigment is degraded to colourless compounds before permanent burial. To reconcile these views, this paper reviews current literature on pigment degradation and proposes a hierarchical control model for pigment deposition and fossil abundance. Over the widest range of production, pigment deposition and fossil concentration are proportional to algal standing crop. However, within a narrower range, the actual concentration of pigment in sediments is regulated by photo- and chemical oxidation. Three phases of loss exist: rapid oxidation in the water column (T1/2=days); slower post-depositional loss in surface sediments (T1/2=years); and very slow loss of double bonds in deep sediments (T1/2=centuries). Despite losses during deposition, fossil and algal abundance remain correlated through time, so long as there is no change in basin morphometry, light penetration, stratification or deepwater oxygen content. At the finest scale, food-web processes can increase the preservation of pigments from edible algae by incorporating pigments into feces that sink rapidly and bypass water column losses. As a consequence of selective loss during deposition and initial burial, carotenoid relative abundance is an unreliable measure of phytoplankton community composition. Instead, absolute concentration — scaled to the historical maximum — should be used for fossil interpretations.

Key words

paleolimnology carotenoid chlorophyll pigment sediment fossil degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. S. & R. T. Prentki, 1986. Sedimentary pigments as an index of the trophic status of Lake Mead. Hydrobiol. 143: 71–77.Google Scholar
  2. Anderson, N. J., 1990a. Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. J. Paleolimnol. 3: 143–160.Google Scholar
  3. Anderson, N. J., 1990b. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnol. Oceanogr. 35: 497–508.Google Scholar
  4. Axelsson, L., C. Dahlin & H. Ryberg, 1982. The function of carotenoids during chloroplast development. V. Correlation between carotenoid content, ultrastructure and chlorophyllb to chlorophylla ratio. Physiol. Plant. 55: 111–116.Google Scholar
  5. Barker, P., 1992. Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolimnol. 7: 235–251.Google Scholar
  6. Barlow, R. G., P. H. Burkill & R. F. C. Mantoura, 1988. Grazing and degradation of algal pigments by marine protozoanOxyrrhis marina. J. exp. mar. Biol. Ecol. 119: 119–129.Google Scholar
  7. Belcher, J. H. & G. E. Fogg, 1964. Chlorophyll derivatives in the sediments of two English lakes. In Miyaka, Y. & T. Koyama, eds. Recent Researches in the Fields of Hydrosphere, Atmosphere and Nuclear Geochemistry. Maruzen Co. Tokyo: 39–48.Google Scholar
  8. Bianchi, T. S. & S. Findlay, 1990. Plant pigments as tracers of emergent and submergent macrophytes from the Hudson River. Can. J. Fish. aquat. Sci. 47: 492–494.Google Scholar
  9. Bianchi, T. S. & S. Findlay, 1991. Decomposition of Hudson estuary macrophytes: photosynthetic pigment transformations and decay constants. Estuar. 14: 67–73.Google Scholar
  10. Bianchi, T. S., S. Findlay & D. Fontvieielle, 1991. Experimental degradation of plant materials in Hudson River sediments. I. Heterotrophic transformations of plant pigments. Biogeochemistry 12: 171–187.Google Scholar
  11. Bickoff, E. M., A. L. Livingston, G. F. Bailey & C. R. Thompson, 1954. Xanthophylls in fresh and dehydrated alfalfa. Agricult. Food Chem. 2: 563–567.Google Scholar
  12. Brassell, S. C., G. Eglington & J. R. Maxwell, 1983. The geochemistry of terpenoids and steroids. Biochem Soc. Trans. 11: 575–586.Google Scholar
  13. Brenner, M. & M. W. Binford, 1988. Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. aquat. Sci. 45: 294–300.Google Scholar
  14. Britton, G. & T. W. Goodwin, 1969. The occurrence of phytoene 1,2-oxide and related carotenoids in tomatoes. Phytochemistry 8: 2257–2258.Google Scholar
  15. Brown, S. R., 1969. Paleolimnological evidence from fossil pigments. Mitt. int. Ver. theor. Angew. Limnol. 17: 95–103.Google Scholar
  16. Brown, S. R. & B. Colman, 1963. Oscillaxanthin in lake sediments. Limnol. Oceanogr. 8: 352–353.Google Scholar
  17. Brown, S. B., J. D. Houghton & G. A. F. Hendry, 1991. Chlorophyll breakdown. In Scheer, H., ed. Chlorophylls. CRC Press. Ann Arbor: 465–489.Google Scholar
  18. Callot, H.J., 1991. Geochemistry of chlorophylls. In Scheer, H., ed. Chlorophylls. CRC Press. Ann Arbor: 339–364.Google Scholar
  19. Carpenter, S. R. & A. M. Bergquist, 1985. Experimental tests of grazing indicators based on chlorophylla degradation products. Arch. Hydrobiol. 102: 303–317.Google Scholar
  20. Carpenter, S. R., M. M. Elser & J. J. Elser, 1986. Chlorophyll production, sedimentation and degradation: implications for paleolimnology. Limnol. Oceanogr. 31: 112–124.Google Scholar
  21. Carpenter, S. R. & others, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.Google Scholar
  22. Carpenter, S. R., P. R. Leavitt, J. J. Elser & M. M. Elser, 1988. Chlorophyll budgets: response to food web manipulations. Biogeochemistry 6: 79–90.Google Scholar
  23. Cary, S. C., J. T. Lovette, P. J. Perl, M. E. Huntley & M. Vernet, 1992. A microencapsulation technique for introducing pure compounds in zooplankton diets. Limnol. Oceanogr. 37: 404–413.Google Scholar
  24. Cheesman, D. F., W. L. Lee & P. F. Zagalsky, 1967. Carotenoproteins in invertebrates. Biol. Rev. 42: 132–160.Google Scholar
  25. Conover, R. J., R. Durvasula, S. Roy & R. Wang, 1986. Probable loss of chlorophyll-derived pigments during passage through the gut of zooplankton and some of the consequences. Limnol. Oceanogr. 31: 878–887.Google Scholar
  26. Cranwell, P. A., 1976. Decomposition of aquatic biota and sediment formation: lipid components of two blue-green algal species and the detritus resulting from microbial attack. Freshwat. Biol. 6: 481–488.Google Scholar
  27. Daley, R. J., 1973. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects. Arch. Hydrobiol. 72: 409–439.Google Scholar
  28. Daley, R. J. & S. R. Brown, 1973. Experimental characterization of lacustrine chlorophyll diagenesis. I. Physiological and environmental effects. Arch. Hydrobiol. 72: 277–304.Google Scholar
  29. Davies, B. H., 1976. Carotenoids. In Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Vol. II. Academic Press. New York: 38–165.Google Scholar
  30. Davis, R. B., 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.Google Scholar
  31. Davis, M. B., R. E. Moeller & J. Ford, 1984. Sediment focusing and pollen influx. In Haworth, E. Y. & J. W. G. Lund, eds. Lake Sediments and Environmental History. Leicester University Press. Bath: 261–294.Google Scholar
  32. Deevey, E. S., H. Vaughan & G. B. Deevey, 1977. Lakes Yaxha and Sacnab, Petenm Guatemala: planktonic fossils and sediment focusing. In Golterman, H. L., ed. Interactions Between Sediments and Fresh Water. Junk. The Hague: 189–196.Google Scholar
  33. Depinto, J. V., 1977. Water column death and decomposition of phytoplankton: an experimental and modelling review. In Scavia, D. & A. Robertson, eds. Lake Ecosystem Modelling. Ann Arbor Science. Ann Arbor: 25–52.Google Scholar
  34. El-Tinay, A. H. & C. O. Chichester, 1970. Oxidation of β-carotene. Site of initial attack. J. Org. Chem. 35: 2290–2293.Google Scholar
  35. Engstrom, D. R. & E. B. Swain, 1986. The chemistry of lake sediments in time and space. Hydrobiologia 143: 37–44.Google Scholar
  36. Fallon, R. D. & T. D. Brock, 1980. Planktonic blue-green algae: production, sedimentation and decomposition in Lake Mendota, WI. Limnol. Oceanogr. 25: 72–88.Google Scholar
  37. Ferrante, J. G. & J. I. Parker, 1977. Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan. Limnol. Oceanogr. 22: 92–98.Google Scholar
  38. Flannery, M. S., R. D. Snodgrass & T. J. Whitmore, 1982. Deepwater sediments and trophic conditions in Florida lakes. Hydrobiol. 92: 597–602.Google Scholar
  39. Fogg, G. E. & J. H. Belcher, 1961. Pigments from the bottom deposits of an English lake. New Phytol. 60: 129–138.Google Scholar
  40. Fox, D. L., 1944. Biochemical fossils. Science 100: 111–113.Google Scholar
  41. Fox, D. L., D. M. Updegraff & G. D. Novelli, 1944. Carotenoid pigments in the ocean floor. Arch. Biochem. 5: 1–23.Google Scholar
  42. Foy, R. H., 1987. A comparison of chlorophylla and carotenoid concentrations as indicators of algal volume. Freshwat. Biol. 17: 237–250.Google Scholar
  43. Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolimnol. 1: 179–192.Google Scholar
  44. Furlong, E. T. & R. Carpenter, 1988. Pigment preservation and remineralization in oxic coastal marine sediments. Geochim. Cosmochim. Acta 52: 87–99.Google Scholar
  45. Gieskes, W. W. & G. W. Kraay, 1986. Analysis of phytoplankton pigments by HPLC before, during and after mass occurrence of the microflagellateCorymbellus aureus during the spring bloom in the northern North Sea in 1983. Mar. Biol. 92: 45–52.Google Scholar
  46. Goericke, R. & N. A. Welschmeyer, 1992. Pigment turnover in the marine diatomThalassiosira weissflogii. II. The14CO2-labelling kinetics of carotenoids. J. Phycol. 28: 507–517.Google Scholar
  47. Goldman, C. R. & E. de Amezaga, 1984. Primary productivity and precipitation at Castle Lake and Lake Tahoe during twenty-four years, 1959–1982. Int. Ver. theor. Limnol. Angew. Verh. 22: 591–599.Google Scholar
  48. Goodwin, T. W., 1980. The Biochemistry of the Carotenoids. Vol. 2. Animals. Chapman & Hall. New York.Google Scholar
  49. Gorham, E. & J. E. Sanger, 1972. Fossil pigments in the surface sediments of a meromictic lake. Limnol. Oceanogr. 17: 618–622.Google Scholar
  50. Gorham, E. & J. Sanger, 1975. Fossil pigments in Minnesota lake sediments and their bearing upon the balance between terrestrial and aquatic inputs to sedimentary organic matter. Ver. int. Ver. theor. Ang. Limnol. 19: 2267–2273.Google Scholar
  51. Gorham, E., J. W. G. Lund, J. E. Sanger & W. E. Dean, Jr., 1974. Some relationships between algal standing crop, water chemistry, and sediment chemistry in the English Lakes. Limnol. Oceanogr. 19: 601–617.Google Scholar
  52. Gowing, M. M. & M. W. Silver, 1983. Origins and microenvironments of bacteria mediating fecal pellet decomposition in sea water. Mar. Biol. 73: 7–16.Google Scholar
  53. Green, J., 1957. Carotenoids inDaphnia. Proc. Roy. Soc. Lond. 147: 392–401.Google Scholar
  54. Griffiths, M., 1978. Specific blue-green algal carotenoids in sediments of Esthwaite Water. Limnol. Oceanogr. 23: 777–784.Google Scholar
  55. Griffiths, M., P. S. Perrott & W. T. Edmondson, 1969. Oscillaxanthin in the sediment of Lake Washington. Limnol. Oceanogr. 14: 317–326.Google Scholar
  56. Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiol. 103: 103–106.Google Scholar
  57. Haberyan, K. A., 1990. The misrepresentation of the planktonic diatom assemblage in traps and sediments: southern Lake Malawi, Africa. J. Paleolimnol. 3: 35–44.Google Scholar
  58. Hallegraeff, G. M., I. J. Mous, R. Veeger, B. J. G. Flik & J. Ringelberg, 1978. A Comparative study on the carotenoid pigmentation of the zooplankton ok Lake Mararsseveen (Netherlands) and of Lac Pavin (Auvergne, France). II. Diurnal variations in carotenoid content. Comp. Biochem. Physiol. 60B: 59–62.Google Scholar
  59. Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol. Oceanogr. 25: 1093–1103.Google Scholar
  60. Head, E. J. H. & L. R. Harris, 1992. Chlorophyll and carotenoid transformation and destruction byCalanus spp. grazing on diatoms. Mar. Ecol. Prog. Ser. In Press.Google Scholar
  61. Herring, P. J., 1968a. The carotenoid pigments ofDaphnia magna Straus — I. The pigments of animals fedChlorella pyrenoidosa and pure carotenoids. Comp. Biochem. Physiol. 24: 187–203.Google Scholar
  62. Herring, P. J., 1968b. The carotenoid pigments ofDaphnia magna Straus — II. Aspects of pigmentary metabolism. Comp. Biochem. Physiol. 24: 205–221.Google Scholar
  63. Hertzberg, S., S. Liaaen-Jensen & H. W. Siegelman, 1971. The carotenoids of blue-green algae. Phytochemistry 10: 3121–3127.Google Scholar
  64. Hessen, D. O. & K. Sorensen, 1990. Photoprotective pigmentation in alpine zooplankton populations. Aqua Fenn. 20: 165–170.Google Scholar
  65. Hilton, J., 1985. A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol. Oceanogr. 30: 1131–1143.Google Scholar
  66. Hilton, J., J. P. Lishman & P. V. Allen, 1986. The dominant processes of sediment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr. 31: 125–133.Google Scholar
  67. Hilton, J., J. P. Lishman, T. R. Carrick & P. V. Allen, 1991. An assessment of the sources of error in estimations of bulk sedimentary pigment concentrations and its implications for trophic status assessment. Hydrobiologia 218: 247–254.Google Scholar
  68. Honjo, S. & M. R. Roman, 1978. Marine copepod fecal pellets: production, preservation and sedimentation. J. mar. Res. 36: 45–57.Google Scholar
  69. Hurley, J. P. & D. E. Armstrong, 1990. Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol. Oceanogr. 35: 384–398.Google Scholar
  70. Hurley, J. P. & D. E. Armstrong, 1991. Pigment preservation in lake sediments: a comparison of sedimentary environments in Trout Lake, Wisconsin. Can. J. Fish. aquat. Sci. 48: 472–486.Google Scholar
  71. Hurley, J. P. & C. J. Watras, 1992. Identification of bacteriochlorophylls in lakes via reverse-phase HPLC. Limnol. Oceanogr. 36: 307–315.Google Scholar
  72. Hurley, J. P., D. E. Armstrong & A. L. DuVall, 1992. Historical interpretation of pigment stratigraphy in Lake Mendota sediments. In Kitchell, J. F., ed. Food Web Management. Springer-Verlag. New York: 49–68.Google Scholar
  73. Jen, J. J. & G. Mackinney, 1970a. On the photodecomposition of chlorophyllin vitro — I. Reaction rates. Photochem. Photobiol. 11: 297–302.Google Scholar
  74. Jen, J. J. & G. Mackinney, 1970b. On the photodecomposition of chlorophyllin vitro — II. Intermediates and breakdown products. Photochem. Photobiol. 11: 303–308.Google Scholar
  75. Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62: 216–233.Google Scholar
  76. Kitchell, J. F. & S. R. Carpenter, 1987. Piseivores, planktivores, fossils and phorbins. In Kerfoot, W. C. & A. Sih, eds. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England: 136–146.Google Scholar
  77. Klein, B., W. W. C. Gieskes & G. G. Kraay, 1986.Oxyrrhis marina studied by H.P.L.C. analysis of algal pigments. J. Plankton Res. 8: 827–836. Digestion of chlorophylls and carotenoids by the marine protozoanOxyrrhis marina studied by H.P.L.C. analysis of algal pigments. J. Plankton Res. 8: 827–836.Google Scholar
  78. Kleppel, G. S., 1988, Plant and animal pigments as trophodynamic indicators. In Soule, D. F. & G. S. Kleppel, eds. Marine Organisms as Indicators. Springer-Verlag. New York: 73–90.Google Scholar
  79. Kleppel, G. S. & E. J. Lessard, 1992. Carotenoid pigments in microzooplankton. Mar. Ecol. Prog. Ser. 84: 211–218.Google Scholar
  80. Kleppel, G. S., L. Williams & R. E. Pieper, 1985. Diel variations in body carotenoid content and feeding activity in marine zooplankton assemblages. J. Plankton Res. 7: 569–580.Google Scholar
  81. Kleppel, G. S., D. V. Holliday & R. E. Pieper, 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol. Oceanogr. 36: 172–178.Google Scholar
  82. Kratz, T. K., T. M. Frost & J. J. Magnuson, 1987. Inferences from spatial and temporal variability in ecosystems: long-term zooplankton data from lakes. Am. Nat. 129: 830–846.Google Scholar
  83. Krinsky, N. I., 1979a. Carotenoid protection against oxidation. Pure Appl. Chem. 51: 649–660.Google Scholar
  84. Krinsky, N. I., 1979b. Carotenoid pigments: multiple mechanisms for coping with the stress of photosensitized oxidations. In Shilo, M. ed. Strategies of Microbial Life in Extreme Environments. Dahlem Konterenzen. Berlin: 163–177.Google Scholar
  85. Krinski, N. I. & S. M. Deneke, 1982. Interactions of oxygen and oxy-radicals with carotenoids. JNCI 69: 205–210.Google Scholar
  86. Lampitt, R. S., T. Noji & B. von Bodungen, 1990. What happens to zooplankton faecal pellets? Implications for material flux. Mar. Biol. 104: 15–23.Google Scholar
  87. Larson, C. P. S. & G. M. MacDonald, 1992. Lake morphometry, sediment mixing and the selection of sites for fine resolution paleoecological studies. Quat. Res.: In Press.Google Scholar
  88. Leavitt, P. R., 1988. Experimental determination of carotenoid degradation. J. Paleolimnol. 1: 215–228.Google Scholar
  89. Leavitt, P. R. & S. R. Brown, 1988. Effects of grazing byDaphnia on algal carotenoids: implications for paleolimnology. J. Paleolimnol. 1: 201–214.Google Scholar
  90. Leavitt, P. R. & S. R. Carpenter, 1989. Effects of sediment mixing and benthic algal production on fossil pigment stratigraphies. J. Paleolimnol. 2: 147–158.Google Scholar
  91. Leavitt, P. R. & S. R. Carpenter, 1990a. Regulation of pigment sedimentation by photo-oxidation and herbivore grazing. Can. J. Fish. aquat. Sci. 47: 1166–1176.Google Scholar
  92. Leavitt, P. R. & S. R. Carpenter, 1990b. Aphotic pigment degradation in the hypolimnion: implications for sedimentation studies and paleolimnology. Limnol. Oceanogr. 35: 520–535.Google Scholar
  93. Leavitt, P. R. & D. L. Findlay, 1994. Calibration of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental Lakes Area, Ontario, Can. J. Fish. aquat. Sci 50: Under review.Google Scholar
  94. Leavitt, P. R., S. R. Carpenter & J. F. Kitchell, 1989. Wholelake experiments: the annual record of fossil pigments and zooplankton. Limnol. Oceanogr. 34: 700–717.Google Scholar
  95. Leavitt, P. R., P. R. Sanford, S. R. Carpenter, J. F. Kitchell & D. Benkowski, 1993. Annual fossil records of food-web manipulation. In S. R. Carpenter & J. F. Kitchell, eds. The Trophic Cascade in Lake Ecosystems. Cambridge University Press, New York: 278–309.Google Scholar
  96. Lee, W. L., 1966. Pigmentation of the marine isopodIdothea montereyenesis. Comp. Biochem. Physiol. 18: 17–36.Google Scholar
  97. Lopez, M. D. G., M. E. Huntley & P. F. Sykes, 1988. Pigment destruction byCalanus pacificus: impact on the estimation of water column fluxes. J. Plankton Res. 10: 715–734.Google Scholar
  98. Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high performance liquid chromatography. Analyt. chim. Acta 151: 297–314.Google Scholar
  99. Mayzaud, P. & S. Razouls, 1992. Degradation of gut pigment during feeding by a subarctic copepod: importance of feeding history and digestive acclimation. Limnol. Oceanogr. 37: 393–404.Google Scholar
  100. Meriläinen, J. 1971. The recent sedimentation of diatom frustules in four meromictic lakes. Ann. Bot. Fenn. 8: 160–176.Google Scholar
  101. Moss, B., 1968. Studies on the degradation of chlorophylla and carotenoids in freshwaters. New Phytol. 67: 49–59.Google Scholar
  102. Owens, T. G. & P. G. Falkowski, 1982. Enzymatic degradation of chlorophylla by marine phytoplanktonin vitro. Phytochemistry 21: 979–984.Google Scholar
  103. Paerl, H. W., J. Tucker & P. T. Bland, 1984. Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol. Oceanogr. 28: 847–857.Google Scholar
  104. Parkin, T. B. & T. D. Brock, 1981. Photosynthetic production and carbon mineralization in a meromictic lake. Arch. Hydrobiol. 91: 366–382.Google Scholar
  105. Pierce, A. C., 1972. Estimating changes in aquatic secondary production over postglacial time. Ph.D. Thesis. State University of New York, Albany, New York, 86 pp.Google Scholar
  106. Redalge, D. G. & E. A. Laws, 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol. 62: 73–79.Google Scholar
  107. Repeta, D. J., 1989. Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide. Geochim. Cosmochim. Acta 53: 699–707.Google Scholar
  108. Repeta, D. J. & R. B. Gagosian, 1981. Carotenoid transformation products in the upwelled waters off the Peruvian coast: suspended particulate, matter sediment trap material, and zooplankton fecal pellet analyses. In Bjoroy, M., ed. Advances in Organic Geochemistry 1981. Wiley & Sons. New York: 380–388.Google Scholar
  109. Repeta, D. J. & R. B. Gagosian, 1982. Carotenoid transformations in coastal marine waters. Nature 295: 51–54.Google Scholar
  110. Repeta, D. J. & R. B. Gagosian, 1984. Transformation reactions and recycling of carotenoids and chlorins in the Peru upwelling region (15°S, 75°W). Geochim. Cosmochim. Acta. 48: 1265–1277.Google Scholar
  111. Repeta, D. J. & R. B. Gagosian, 1987. Carotenoid diagenesis in recent marine sediments — 1. The Peru continental shelf (15°S, 75°W). Geochim. Cosmochim. Acta 51: 1001–1009.Google Scholar
  112. Ridout, P. S. & R. J. Morris, 1985. Short-term variations in the pigment composition of a spring phytoplankton bloom from an enclosed experiment. Mar. Biol. 87: 7–11.Google Scholar
  113. Ringelberg, J., 1980. Aspects of red pigmentation in zooplankton, especially copepods. In Kerfoot, W. C., ed. Evolution and Ecology of Zooplankton Communities. University of New England Press, Hanover: 91–97.Google Scholar
  114. Robbins, J.A., 1982. Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos. Hydrobiologia 92: 611–622.Google Scholar
  115. Ryberg, H., L. Axelson, B. Klockare & A. S. Sandelius, 1981. The function of carotenoids during chloroplast development. III. Protection of the prolamellar body and the enzymes for chlorophyll synthesis from photodestruction, sensitized by early forms of chlorophyll. In Akoyounoglou, A., ed. Photosynthesis V. Chloroplast Development. Bababan International Science Services. Philidelphia: 295–304.Google Scholar
  116. Sanger, J. E., 1988. Fossil pigments in paleoecology and paleolimnology. Palaeogeog. Palaeoclim. Palaeolimnol. 62: 343–359.Google Scholar
  117. Sanger, J. E. & E. Gorham, 1970. The diversity of pigments in lake sediments and its ecological significance. Limnol. Oceanogr. 15: 59–69.Google Scholar
  118. Sanger, J. E. & G. H. Crowl, 1979. Fossil pigments as a guide to the paleolimnology of Brown's Lake, Ohio. Quat. Res. 11: 342–352.Google Scholar
  119. Schindler, D. W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. aquat. Sci. 44: 6–25.Google Scholar
  120. Schindler, D. W., R. W. Newbury, K. G. Beatty, J. Prokopowich, T. Ruszczynski & J. A. Dulton, 1980. Effects of a windstorm and forest fire on chemical losses from forested watersheds and on the quality of receiving streams. Can. J. Fish. aquat. Sci. 37: 328–334.Google Scholar
  121. Shuman, F. R. & C. J. Lorenzen, 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20: 580–586.Google Scholar
  122. Simpson, K. L. & C. O. Chichester, 1981. Metabolism and nutritional significance of carotenoids. Ann. Rev. Nutr. 1: 351–374.Google Scholar
  123. Simpson, K. L., T-C. Lee, D. B. Rodriguez & C. O. Chichester, 1976. Metabolism in senescent and stored tissues. In Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Vol. I. Academic Press. New York: 797–842.Google Scholar
  124. Sistrom, W. R., M. Griffiths & R. Y. Stanier, 1956. The biology of a photosynthetic bacterium which lacks colored carotenoids. J. Cell. Comp. 48: 473–515.Google Scholar
  125. SooHoo, J. B. & D. A. Kiefer, 1982a. Vertical distribution of pheopigments — I. A Simple grazing and photooxidative scheme for small particles. Deep-Sea Res. 29: 1539–1551.Google Scholar
  126. SooHoo, J. B. & D. A. Kiefer, 1982b. Vertical distribution of pheopigments — II. Rates of production and kinetics of photooxidation. Deep-Sea Res. 29: 1553–1563.Google Scholar
  127. Sun, M-Y., C. Lee & R. C. Aller, 1993. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim. Cosmochim. Acta 57: 147–157.Google Scholar
  128. Swain, E. B., 1985. Measurement and interpretation of sedimentary pigments. Freshwat. Biol. 15: 53–75.Google Scholar
  129. Tett, P., 1982. The Loch Eil project: planktonic pigments in sediments from Loch Eil and the Firth of Lorne. J. exp. mar. Biol. Ecol. 56: 1101–1114.Google Scholar
  130. Vallentyne, J. R., 1957. Carotenoids in 20 000-year old sediment from Searles Lake, California. Arch. Biochem. Biophys. 70: 29–34.Google Scholar
  131. Van Heukeleum, L., A. J. Lewitus, T. M. Kana & N. E. Craft, 1992. High-performance liquid chromatography of phytoplankton pigments using a polymeric reversed-phase C18 column. J. Phycol. 28: 867–872.Google Scholar
  132. Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40.Google Scholar
  133. Wang, R. & R. J. Conover, 1986. Dynamics of gut pigment in the copepodTemora longicornis and the determination ofin situ grazing rates. Limnol. Oceanogr. 31: 867–877.Google Scholar
  134. Watts, C. D. & J. R. Maxwell, 1977. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim. Acta 41: 493–497.Google Scholar
  135. Welschmeyer, N. A. & C. J. Lorenzen, 1985a. Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30: 1–21.Google Scholar
  136. Welschmeyer, N. A. & C. J. Lorenzen, 1985b. Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Mar. Biol. 90: 75–86.Google Scholar
  137. Welschmeyer, N. A., A. E. Copping, M. Vernet & C. J. Lorenzen, 1984. Diel fluctuation in zooplankton grazing rate as determined from the downward vertical flux of pheopigments. Mar. Biol. 83: 263–270.Google Scholar
  138. Wetzel, R. G., 1981. Longterm dissolved and particulate alkaline phosphatase activity in a hardwater lake in relation to lake stability and phosphorus enrichments. Ver. int. Verein. Theor. Ang. Limnol. 21: 369–381.Google Scholar
  139. Wright, S. W., S. W. Jeffery, R. F. C. Mantoura, C. A. Llewellyn, T. Bjørnland, D. Repeta & N. Welschmeyer, 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 77: 183–196.Google Scholar
  140. Yacobi, Y. Z., R. F. C. Mantoura & C. A. Llewellyn. 1991. The distribution of chlorophylls, carotenoids and their breakdown products in Lake Kineret (Israel) sediments. Freshwat. Biol. 26: 1–10.Google Scholar
  141. Yamamoto, H. Y. & C. O. Chichester, 1965. Dark incorporation of18O2 into antheraxanthin by bean leaf. Biochim. Biophys. Acta 109: 303–305.Google Scholar
  142. Zechmeister, L., 1962.Cis-trans Isomeric Carotenoids, Vitamina and Arylpolyenes. Academic Press. New York.Google Scholar
  143. Züllig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Peter R. Leavitt
    • 1
  1. 1.Department of ZoologyUniversity of AlbertaEdmontonCanada

Personalised recommendations