Structural Chemistry

, Volume 4, Issue 2, pp 91–101

Redetermination of the cobaltocene crystal structure at 100 K and 297 K: Comparison with ferrocene and nickelocene

  • M. Yu. Antipin
  • R. Boese
  • N. Augart
  • G. Schmid
Article

Abstract

The molecular and crystal structures of the monoclinic modification of cobaltocene Cp2Co (P21/n, Z=2) was determined at 100 K and 297 K with new sets of X-ray diffraction data (Mo radiation, 3995 and 6534 reflections, refinement toR = 0.026 and 0.030 using 1061 and 1299 independent observable reflections, respectively). At 297 K the structure is disordered (similar to the isomorphous ferrocene and nickelocene) with two distinct orientations of the ring, differing in occupancy factors (80% and 20%) and by a rotation angle in the ring plane of approximately 34°. Just as for nickelocene but in contrast to ferrocene, no sharp phase transition was found on cooling Cp2Co to 100 K, but an essential ordering of the Cp-ring position was detected with a decrease of the contribution of the second minor orientation to nearly 10%. On the basis of a careful analysis of the molecular geometry, crystal packing, and anisotropic atomic displacement parameters, a dynamic temperature-dependent nature of the disorder in Cp2Co is assumed.

Key words

Cobaltocene molecular geometry crystal structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, E. O.; Pfab, W.Z. Naturforsch. Teil B 1952,7, 377–379.Google Scholar
  2. 2.
    Eiland, P. F.; Pepinsky, R.J. Am. Chem. Soc. 1952,74, 4971.Google Scholar
  3. 3.
    Dunitz, J. D.; Orgel, L. E.Nature (London) 1953,171, 121–122.Google Scholar
  4. 4.
    Pfab, W.; Fischer, E. O.Z. Anorg. Allg. Chem. 1953,274, 316–322.Google Scholar
  5. 5.
    Dunitz, J. D.; Orgel, L. E.; Rich, A.Acta Crystallogr. 1956,9, 373–375.Google Scholar
  6. 6.
    Edwards, J. W.; Kington, G. L.; Mason, R.Trans. Faraday Soc. 1960,56, 660–667;.Google Scholar
  7. 7.
    Willis, B. T. M.Acta Crystallogr. 1960,13, 763–766.Google Scholar
  8. 8.
    Campbell, A. J.; Fyfe, C. A.; Harold-Smith, D.; Jeffrey, K. R.Mol. Cryst. Liq. Cryst.,1976,36, 1–23.Google Scholar
  9. 9.
    Takusagawa, F.; Koetzle, T. F.Acta Crystallogr. Sect. B 1979,35, 1074–1081.Google Scholar
  10. 10.
    Seiler, P.; Dunitz, J. D.Acta Crystallogr. Sect. B 1979,35, 2020–2032.Google Scholar
  11. 11.
    Seiler, P.; Dunitz, J. D.Acta Crystallogr. Sect. B 1979,35, 1068–1074.Google Scholar
  12. 12.
    Calvarin, G.; Berar, J. F.; Clec'h, G.; Andre, D.J. Phys. Chem. Solids 1982,43, 791–796.Google Scholar
  13. 13.
    Bünder, W.; Weiss, E.J. Organomet. Chem. 1975,92, 65–68.Google Scholar
  14. 14.
    Azokpota, C.; Pommier, C.; Berar, J. F.; Calvarin, G.J. Organomet. Chem. 1977,135, 125–135.Google Scholar
  15. 15.
    Seiler, P.; Dunitz, J. D.Acta Crystallogr. Sect. B 1980,36, 2255–2260.Google Scholar
  16. 16.
    Calvarin, G.; Weigel, D.J. Appl. Crystallogr. 1976,9, 212–215.Google Scholar
  17. 17.
    Sourisseau, G.; Lucazeau, G.; Dianoux, J. J.; Poinsignon, C.Mol. Phys. 1983,48, 367–377.Google Scholar
  18. 18.
    Clec'h, G.; Calvarin, G.Mol. Cryst. Liq. Cryst. 1985,128, 305–320.Google Scholar
  19. 19.
    Clec'h, G.; Calvarin, G.Mol. Cryst. Liq. Cryst. 1981,75, 345–354.Google Scholar
  20. 20.
    Haaland, A.Acc. Chem. Res. 1979,12, 415–422.Google Scholar
  21. 21.
    Hedberg, A. K.; Hedberg, L.; Hedberg, K.J. Chem. Phys. 1975,63, 1262–1266.Google Scholar
  22. 22.
    Almenningen, A.; Gard, E., Haaland, A.; Brunvoll, J.J. Organomet. Chem. 1976,107, 273–279.Google Scholar
  23. 23.
    Ammeter, J. H.; Oswald, N.; Bucher, R.Helv. Chim. Acta 1975,58, 671–682.Google Scholar
  24. 24.
    Ammeter, J. H.J. Magn. Reson. 1978,30, 299–325.Google Scholar
  25. 25.
    Dunitz, J. D.; Seiler, P.Acta Crystallogr. Sect. B 1973,29, 589–595.Google Scholar
  26. 26.
    Trueblood, K. N.Acta Crystallogr. Sect. A 1978,34, 950–954.Google Scholar
  27. 27.
    Zanin, I. E.; Antipin, M. Yu.; Struchkov, Yu. T.Kristallographia 1990,35, 885–888.Google Scholar
  28. 28.
    Rosenfeld, R. E.; Trueblood, K. N.; Dunitz, J. D.Acta Crystallogr. Sect. A 1978,34, 828–829.Google Scholar
  29. 29.
    Hirshfeld, F. L.Acta Crystallogr. Sect. A 1976,32, 239–244.Google Scholar
  30. 30.
    Maverick, E.; Dunitz, J. D.Mol. Phys. 1987,62, 451–459.Google Scholar
  31. 31.
    Antipin, M. Yu.; Boese, R. Abstracts of the Xth Sagamore Conference on Charge, Spin and Momentum Densities, Konstanz, Germany 1991; 4.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Yu. Antipin
    • 1
    • 2
  • R. Boese
    • 1
  • N. Augart
    • 1
  • G. Schmid
    • 1
  1. 1.Institut für Anorganische Chemie der Universität-GH EssenEssenGermany
  2. 2.Institute of Organoelement Compounds (INEOS)MoscowRussia
  3. 3.Institut für Anorganishe Chemie der Universität-GH EssenEssen 1Germany

Personalised recommendations