International Journal of Theoretical Physics

, Volume 34, Issue 8, pp 1615–1626 | Cite as

Constitution of objects in classical mechanics and in quantum mechanics

  • Peter Mittelstaedt


The constitution of objects is discussed in classical mechanics and in quantum mechanics. The requirement of objectivity and the Galilei invariance of classical and quantum mechanics leads to the postulate of covariance which must be fulfilled by observable quantities. Objects are then considered as carriers of these covariant observables and turn out to be representations of the Galilei group. Individual systems can be defined in classical mechanics by their trajectories in phase space. However, in quantum mechanics the characterization of individuals can only be achieved approximately by means of unsharp observables.


Covariance Field Theory Phase Space Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohr, N. (1928).Nature,121, 580–590.Google Scholar
  2. Busch, P., Lahti, P., and Mittelstaedt, P. (1991).The Quantum Theory of Measurement, Springer, Berlin.Google Scholar
  3. Busch, P., Grabowski, M., and Lahti, P. (n.d.). Operational quantum physics, in preparation.Google Scholar
  4. Dalla Chiara, M. L., and Giuntini, R. (n.d.-a). The logics of orthoalgebra,Foundation of Physics, to appear.Google Scholar
  5. Dalla Chiara, M. L., and Giuntini, R. (n.d.-b). Partial and unsharp quantum logics,Foundation of Physics, to appear.Google Scholar
  6. Giuntini, R., and Greuling, H. (1989).Foundations of Physics,19, 931.Google Scholar
  7. Jauch, J. M. (1968).Foundations of Quantum Mechanics, Addison-Wesiey, Reading, Massachusetts.Google Scholar
  8. Kant, I. (1787).Kritik der reinen Vernunft. Google Scholar
  9. Lahti, P. (1992). Galilei invariant quantum mechanics, Lecture notes, Köln.Google Scholar
  10. Mach, E. (1926).Erkenntnis und Irrtum, 5th ed., J. A. Barth, Leipzig.Google Scholar
  11. Mackey, G. (1963).The Mathematical Foundation of Quantum Mechanics, Benjamin, New York.Google Scholar
  12. Mittelstaedt, P. (1987a).Sprache und Realität in der Modernen Physik, B. I. Wissenschaftsverlag, Mannheim.Google Scholar
  13. Mittelstaedt, P. (1987b). InSymposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds., World Scientific, Singapore.Google Scholar
  14. Mittelstaedt, P. (1994). InKant and Contemporary Epistemology, P. Parrini, ed., Kluwer, Dordrecht, p. 115.Google Scholar
  15. Ozawa, M. (1984).Journal of Mathematical Physics,25, 79.Google Scholar
  16. Piron, C. (1976).Foundations of Quantum Physics, Addison-Wesiey, Reading, Massachusetts, pp. 93ff.Google Scholar
  17. Scherer, H. (1994). Dissertation, University of Cologne.Google Scholar
  18. Varadarajan, V. S. (1985).Geometry of Quantum Theory, 2nd ed., Springer, Berlin.Google Scholar
  19. Weyl, H. (1966).Philosophie der Mathematik und Naturwissenschaft, 3rd ed., Oldenburg, Munich.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Peter Mittelstaedt
    • 1
  1. 1.Institut für Theoretische Physik der Universität zu KölnCologneGermany

Personalised recommendations