Structural Chemistry

, Volume 1, Issue 1, pp 75–78 | Cite as

The molecular geometry of iron trifluoride from electron diffraction and a reinvestigation of aluminum trifluoride

  • Magdolna Hargittai
  • Mária Kolonits
  • János Tremmel
  • Jean-Louis Fourquet
  • Gerard Ferey
Inorganic Chemistry


The molecular geometry of iron trifluoride has been determined at 1260 K by gas-phase electron diffraction. Use of a platinum envelope during the experiment prevented the iron trifluoride sample from partial reduction otherwise observed at high temperatures. The molecular geometry of aluminum trifluoride has been reinvestigated at 1300 K. The electron diffraction results for both AlF3 and FeF3 are compatible with planar bond configuration (D 3h symmetry) with bond lengths (r g ): Al-F 1.630±0.003 Å and Fe-F 1.763±0.004 Å. Experimental vibrational frequencies support the notion of planarity for aluminum trifluoride. There is no such additional spectroscopic evidence available for iron trifluoride.


Iron Aluminum Physical Chemistry Platinum Bond Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Utkin, A. N.; Girichev, G. V.; Giricheva, N. I.; Khaustov, S. V.Zh. Strukt. Khim. 1986,27(2), 43.Google Scholar
  2. 2.
    Girichev, G. V.; Utkin, A. N.; Giricheva, N. I.Izv. Vuzov. Khim. Khim. Tekhnol. 1983,24(5), 634.Google Scholar
  3. 3.
    Akishin, P. A.; Zasorin, E. Z.; Rambidi, N. G.Kristallografiya 1959,4, 186.Google Scholar
  4. 4.
    Ferey, G.; Litterst, J. unpublished results.Google Scholar
  5. 5.
    Hargittai, I.; Tremmel, J.; Kolonits, M.HSI Hung. Sci. Instrum. 1980,50, 31.Google Scholar
  6. 6.
    Hargittai, I.; Bohátka, S.; Tremmel, J.; Berecz, I.HSI Hung. Sci. Instrum. 1980,50, 51.Google Scholar
  7. 7.
    Porter, R. F.; Zeller, E. E.J. Chem. Phys. 1960,33, 858.Google Scholar
  8. 8.
    Zhegulskaya, N. A.; Sholt's, V. B.; Sidorov, L. N.Zh. Fiz. Khim. 1972,46, 1889.Google Scholar
  9. 9.
    Zhuravleva, L. V.; Alihanian, A. S.; Sidorov, L. N.Zh. Fiz. Khim. 1976,50, 1349.Google Scholar
  10. 10.
    Tremmel, J.; Hargittai, I.J. Phys. E. Sci. Instrum. 1985,18, 148.Google Scholar
  11. 11.
    Utkin, A. N. Dissertation Abstract, Chemico-Technical Institute, Ivanovo, 1986.Google Scholar
  12. 12.
    Hargittai, M.; Hargittai, I.J. Chem. Phys. 1973,63, 2335.Google Scholar
  13. 13.
    Bonham, R. A.; Schäfer, L.International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. IV, p. 176 (coherent scattering factors); Tavard, C.; Nicolas, D.; Rouault, M.J. Chim. Phys. Phys.-Chim. Biol. 1974,64, 549 (incoherent scattering factors).Google Scholar
  14. 14.
    Andersen, B.; Seip, H. M.; Strand, T. G.; Stø1evik, R.Acta Chem. Scand. 1969,23, 3224.Google Scholar
  15. 15.
    Büchler, A.; Marram, E. P.; Stauffer, J. L.J. Phys. Chem. 1967,71, 4139.Google Scholar
  16. 16.
    Yang, Y. S.; Shirk, J. S.J. Mol. Spectrosc. 1975,54, 39.Google Scholar
  17. 17.
    Snelson, A.J. Phys. Chem. 1967,71, 3202.Google Scholar
  18. 18.
    Gershikov, A. G.; Subbotina, N. Y.; Girichev, G. V.Zh. Struct. Khim. 1986,27(5), 36.Google Scholar
  19. 19.
    Cyvin, S. J.Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget: Oslo; Elsevier: Amsterdam, 1968.Google Scholar
  20. 20.
    DeVore, T. C.; Van Zee, R. J.; Weltner, W. Jr. InProc. Symp. on High Temperature Metal Halide Chemistry; The Electrochemical Society: Princeton, NJ, 1978; p. 187.Google Scholar

Copyright information

© VCH Publishers, Inc 1989

Authors and Affiliations

  • Magdolna Hargittai
    • 1
  • Mária Kolonits
    • 1
  • János Tremmel
    • 1
  • Jean-Louis Fourquet
    • 2
  • Gerard Ferey
    • 2
  1. 1.Structural Chemistry Research Group of the Hungarian Academy of SciencesEötvös UniversityBudapestHungary
  2. 2.Fluorides LaboratoryMaine UniversityLe Mans CedexFrance

Personalised recommendations