Skip to main content
Log in

Nonsymmetric Kaluza-Klein and Jordan-Thiry theory in a general non-Abelian case

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to an (n+4)-dimensional unification of NGT (nonsymmetric gravitation theory) and Yang-Mills theory in a Jordan-Thiry manner. We find “interference effects” between gravitational and Yang-Mills fields which appear to be due to the skew-symmetric part of the metric on the (n+4)-dimensional manifold (nonsymmetrically metrized principal fiber bundle). Our unification, called the nonsymmetric-non-Abelian Jordan-Thiry theory, becomes classical if the skew-symmetric part of the metric is zero. We find the Yang-Mills field Lagrangian up to the second order of approximation inh μν =g μν η μν . We also deal with the Lagrangian for the scalar field (connected to the “gravitational constant”). We consider the spin content of the theory and a relationship between the cosmological constant and the coupling constant between the skewon field and the gauge field in the first order of approximation. We show how to derive a dielectric model of a confinement from “interference effects” in these theories. We underline some similarities between the nonsymmetric Jordan-Thiry Lagrangian in the flat space limit and the soliton bag model Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaluza, T. (1921). Zum Unitätsproblem der Physik,Sitzgungsberichte der Preussichen Akademic der Wissenschaften,1921, 966.

    Google Scholar 

  2. Klein, O. (1926).Zeitschrift der Physik,37, 895; Klein, O. (1939). On the theory of charged fields, inNew theories in Physics (Conference Organized in Collaboration with International Union of Physics and the Polish Co-operation Committee, Warsaw, May 30–June 3, 1938), Paris, p. 77.

    Google Scholar 

  3. Einstein, A. (1951).The Meaning of Relativity, AppendixII, 5th ed., rev., Methuen, London, p. 127; Jakubowicz, A., and Klekowska, J. (1969). The necessary and sufficient condition for the existence of the unique connection of the two-dimensional generalized Riemannian space,Tensor N, S.,20, 72; Chung, K. T., and Lee, Y. J. (1988).International Journal of Theoretical Physics,27, 1083; Chung, K. T., and Hwang, H. J. (1988).International Journal of Theoretical Physics,27, 1105; Shavokhina, N. S. (1986). Nonsymmetric metric in nonlinear field theory, Preprint of the JINR, P2-86-685, Dubna.

    Google Scholar 

  4. Kaufman, B. (1956). Mathematical structure of the nonsymmetric field theory,Helvetica Physica Acta Supplement,1956, 227; Chung, K. T. (1983). Some recurrence relations for Einstein's connection for 2-dimensional unified theory of relativity,Acta Mathematica Hungarica,41(1–2), 47.

    Google Scholar 

  5. Einstein, A., and Kaufman, B. (1954).Annals of Mathematics,59, 230; Kaufman, B. (1945).Annals of Mathematics,46, 578.

    Google Scholar 

  6. Einstein, A. (1945).Annals of Mathematics,46, 578; Einstein, A., and Strauss, E. G. (1946).Annals of Mathematics,47, 731.

    Google Scholar 

  7. Kerner, T. (1968).Annales de l'Institut Henri Poincaré,IX, 143.

    Google Scholar 

  8. Cho, Y. M. (1975).Journal of Mathematical Physics 16, 2029; Cho, Y. M., and Freund, P. G. O. (1975).Physical Review D,12, 1711.

    Google Scholar 

  9. Kopczyński, W. (1980). A fibre bundle description of coupled gravitational and gauge fields, inDifferential Geometrical Methods in Mathematical Physics, Springer-Verlag, Berlin, p. 462.

    Google Scholar 

  10. Kalinowski, M. W. (1983).International journal of Theoretical Physics,22, 385.

    Google Scholar 

  11. Thirring, W. (1972). Five dimensional theories and CP violation,Acta Physica Austriaca Supplement IX,1972, 256.

    Google Scholar 

  12. Kalinowski, M. W. (1981). PC nonconservation and dipole electric moment of fermion in the Kaluza-Klein Theory,Acta Physica Austriaca,53, 229.

    Google Scholar 

  13. Kalinowki, M. W. (1984).International Journal of Theoretical Physics,23, 131.

    Google Scholar 

  14. Kalinowski, M. W. (1983). 2/3 spinor field in the Klein-Kaluza theory,Acta Physica Austriaca,55, 197.

    Google Scholar 

  15. Kalinowski, M. W. (1982).Journal of Physics A: Mathematical and General,15, 2441.144.

    Google Scholar 

  16. Kalinowski, M. W. (1981).International Journal of Theoretical Physics,20, 563.

    Google Scholar 

  17. Einstein, A. (1905).Annalen der Physik,17, 891.

    Google Scholar 

  18. Kalinowski, M. W. (1983).Journal of Mathematical Physics,24, 1835.

    Google Scholar 

  19. Kalinowski, M. W. (1983).Canadian Journal of Physics,61, 844.

    Google Scholar 

  20. Jordan, P. (1955).Shwerkraft und Weltal, Vieweg Verlag, Braunschweig.

    Google Scholar 

  21. Thirry, Y. (1951).Étude matématique de equations d'une theorie unitare a quinze variables de champ, Gautiers-Villars.

  22. Lichnerowicz, A. (1955).Theoreie relativistes de la gravitation et de l'electromagnetisme, Masson, Paris.

    Google Scholar 

  23. Kalinowski, M. W. (1983).Journal of Physics A: Mathematical and General,16, 1669.

    Google Scholar 

  24. Kalinowski, M. W. (1984).Nuovo Cimenta 80A: 47.

    Google Scholar 

  25. Kalinowski, M. W. (1984).Journal of Mathematical Physics,25, 1045.

    Google Scholar 

  26. Kalinowski, M. W. (1983).Annals of Physics,148, 241.

    Google Scholar 

  27. Kalinowski, M. W. (1986).Fortschritte der Physik,34, 361.

    Google Scholar 

  28. Kalinowski, M. W., and Mann, R. B. (1984). Linear approximation in the nonsymmetric Kaluza-Klein theory,Classical and Quantum Gravity,1, 157.

    Google Scholar 

  29. Kalinowski, M. W., and Mann, R. B. (1986).Nuovo Cimenta,91B, 67.

    Google Scholar 

  30. Kalinowski, M. W., and Kunstatter, G. (1984).Journal of Mathematical Physics,25, 117.

    Google Scholar 

  31. Mann, R. B. (1985).Journal of Mathematical Physics,26, 2308.

    Google Scholar 

  32. Kalinowski, M. W. (1987).International Journal of Theoretical Physics,26, 21.

    Google Scholar 

  33. Kalinowski, M. W. (1987).International Journal of Theoretical Physics,26, 565.

    Google Scholar 

  34. Moffat, J. W. (1982). Generalized theory of gravitation and its physical consequences, inProceeding of the VII International School of Gravitation and Cosmology. Erice, V. de Sabbata, ed., World Scientific, Singapore, p. 127.

    Google Scholar 

  35. Kunstatter, G., Moffat, J. W., and Malzan, J. (1983).Journal of Mathematical Physics,24, 886.

    Google Scholar 

  36. Hilbert, D. (1916).Göttingen Nachrichten,12.

  37. Levi-Civita, (1917).Atti Accademia Nazionale dei Lincei Classe di Scienze Fisichi, Matematiche e Naturali. Memorie, Thirry, Y. (1951).Journal de Mathématiques Pure et Appliquées,30, 275.

  38. Lichnerowicz, A. (1939).Sur certains problems globaux relatifs au systeme des equations d'Einstein, Hermann, Paris.

    Google Scholar 

  39. Einstein, A., and Pauli, W. (1943).Annals of Mathematics,44, 131; Einstein, A. (1941).Revista Universidad Nacional Tucuman,2, 11.

    Google Scholar 

  40. Werder, R. (1982).Physical Review D,25, 2515; Bertnik, R., and McKinnon, J. (1988).Physical Review Letters,61, 141.

    Google Scholar 

  41. Kunstatter, G. (1984).Journal of Mathematical Physics,25, 2691.

    Google Scholar 

  42. Roseveare, N. T. (1982).Mercury's Perihelion: From Le Verrier to Einstein, Clarendon Press, Oxford.

    Google Scholar 

  43. Hlavaty, V. (1957).Geometry of Einstein's Unified Field Theory, Nordhoff-Verlag, Groningen; Tonnelat, M. A. (1966).Einstein's Unified Field Theory, Gordon and Breach, New York.

    Google Scholar 

  44. Hill, H. A., Bos, R. J., and Goode, P. R. (1983).Physical Review Letters,33, 709; Hill, H. A. (1984).International Journal of Theoretical Physics,23, 689; Gough, D. O. (1982).Nature,298, 334.

    Google Scholar 

  45. Moffat, J. W. (1983).Physical Review Letters,50, 709; Campbell, L., and Moffat, J. B. (1983).Astrophysical Journal,275, L77.

    Google Scholar 

  46. Moffat, J. W. (1982). The orbit of Icarus as a test of a theory of gravitation, University of Toronto preprint, May 1982; Campbell, L., McDow, J. C., Moffat, J. W., and Vincent, D. (1983).Nature,305, 508.

  47. Moffat, J. W. (1984).Foundation of Physics,14, 1217; Moffat, J. W. (1981). Test of a theory of gravitation using the data from the binary pulsar 1913 +16, University of Toronto Report, August 1981; Kisher, T. P. (1985).Physical Review D,32, 329; Will, M. C. (1989).Physical Review Letters,62, 369.

    Google Scholar 

  48. Moffat, J. W. (1985). Experimental consequences of the nonsymmetric gravitation theory including the apsidal motion of binaries, Lecture given at the conference on General Relativity and Relativistic Astrophysics, University of Dalhouse, Halifax, Nova Scotia, April 1985.

    Google Scholar 

  49. Mcdow, J. C. (1983). Testing the nonsymmetric theory of graviation, Ph.D. thesis, University of Toronto; Huffman, J. A., Masshal, H. L., and Lewin, W. G. H. (1978).Nature,271, 630.

  50. Bergman, P. G. (1968).International journal of Theoretical Physics,1, 52.

    Google Scholar 

  51. Trautman, A. (1970).Reports of Mathematical Physics,1, 29.

    Google Scholar 

  52. Utiyama, R. (1956).Physical Review,101, 1597.

    Google Scholar 

  53. Stacey, F. D., Tuck, G. J., Moore, G. J., Holding, S. C., Goldwin, B. D., and Zhou, R. (1987).Review of Modern Physics,59, 157; Ander, M. E., Goldman, T., Hughs, R. J., and Nieto, M. M. (1988).Physical Review Letters,60, 1225; Eckhardt, D. H., Jekeli, C., Lazarewicz, A. R., Romaides, A. J., and Sands, R. W. (1988).Physical Review Letters,60, 2567; Moore, G. I., Stacey, F. D., Tuck, G. J., Goodwin, B. D., Linthorne, N, P., Barton, M. A., Reid, D. M., and Agnew, G. D. (1988).Physical Review D,38, 1023.

    Google Scholar 

  54. Fischbach, E., Sudarsky, D., Szafer, A., Tolmadge, C., and Arnson, S. H. (1985).Physical Review Letters,56, 3.

    Google Scholar 

  55. Thieberg, P. (1987).Physical Review Letters,58, 1066.

    Google Scholar 

  56. Wesson, P. S. (1980).Physics Today,33, 32.

    Google Scholar 

  57. illies, G. T., and Ritter, R. C. (1984). Experiments on variation of the gravitational constant using precision rotations, inPrecision Measurements and Fundamental Constants II, B. N. Taylor and W. D. Phillips, eds., National Bureau of Standards, Special Publication 617, p. 629.

  58. Rayski, J. (1965). Unified theory and modern physics,Acta Physica Polonica,28, 89.

    Google Scholar 

  59. obayashi, S., and Nomizu, K. (1963).Foundation of Differential Geometry, Vols. I and II, New York; Kobayashi, S. (1972).Transformation Groups in Differential Geometry, Springer-Verlag, Berlin.

  60. Lichnerowicz, A. (1955).Théorié globale des connexions et de group d'holonomie, Cremonese, Rome.

    Google Scholar 

  61. Hermann, R. (1978). Yang-Mills, Kaluza-Klein and the Einstein program, Math. Sci. Press, Brookline, Massachusetts; Coquereaux, R., and Jadczyk, A. (1988).Riemannian Geometry, Fibre Bundle, Kaluza-Klein Theory and All That ..., World Scientific, Singapore.

    Google Scholar 

  62. Zalewski, K. (1987).Lecture on Rotational Group, PWN, Warsaw [in Polish]; Barut, A. O., and Raczka, R. (1980).Theory of Group Representations and Applications, PWN, Warsaw.

    Google Scholar 

  63. Moffat, J. W. (1978).Physical Review D,19, 3562.

    Google Scholar 

  64. Kalinowski, M. W. (1986). Comment on the nonsymmetric Kaluza-Klein theory with material sources,Zeitschrift für Phisik C (Particles and Fields),33, 76.

    Google Scholar 

  65. Moffat, J. W. (1979).Physical Review D,19, 3557.

    Google Scholar 

  66. Moffat, J. W. (1981).Physical Review D,23, 2870.

    Google Scholar 

  67. Moffat, J. W., and Woolgar, E. (1984). The apsidal motion of the binary star in the nonsymmetric gravitational theory, University of Toronto Report; Moffat, J. W. (1984). The orbital motion of DI Hercules as a test of the theory of gravitation, University of Toronto Report.

  68. De Groot, S. R., and Suttorp, R. G. (1972).Foundations of Electrodynamics, North-Holland, Amsterdam.

    Google Scholar 

  69. Plebański, J. (1970).Nonlinear Electrodynamics, Nordita, Copenhagen.

    Google Scholar 

  70. Kalinowski, M. W. (1981).Letters in Mathematical Physics,5, 489; Kalinowski, M. W. (1958). Torsion and the Kaluza-Klein theory,Acta Physica Austriaca 27, 45.

    Google Scholar 

  71. Hlavaty, V. (1952).Journal of Rational Mechanics and Analysis 1, 539; Hlavaty, V. (1953).Journal of Rational Mechanics and Analysis,2, 2, 223. Hlavaty, V. (1955).Journal of Rational Mechanics and Analysis,4, 247, 654.

    Google Scholar 

  72. Wyman, M. (1950).Canadian Journal of Mathematics,427.

  73. Lanczos, C. (1970).The Variational Principles of Mechanics, University of Toronto Press, Toronto, Ontario, Canada.

    Google Scholar 

  74. Klotz, A. H. (1983).Macrophysics and Geometry, Cambridge University Press, Cambridge; Klotz, A. H. (1988). Plane waves in the generalized field theory,Acta Physica Polonica B,19, 533.

    Google Scholar 

  75. Kalinowski, M. W. (1982).Physical Review D,26, 3419.

    Google Scholar 

  76. Einstein, A. (1950).Canadian Journal of Mathematics,2, 120.

    Google Scholar 

  77. Duff, M. J., Nilson, B. E. W., and Pope, C. N. (1986).Physics Reports,130, 1.

    Google Scholar 

  78. Arkuszewski, W., Kopczyński, W., and Ponomaviev, V. N. (1974).Annales de l'Institut Henri Poincaré A,21, 89.

    Google Scholar 

  79. Mann, R. B. (1982). Investigations of an alternative theory of gravitation, Ph.D. thesis, University of Toronto, Toronto, Ontario, Canada.

    Google Scholar 

  80. Mann, R. B., and Moffat, J. W. (1981).Journal of Physics A,14, 2367;Journal of Physics A,15, 1055.

    Google Scholar 

  81. Moffat, J. W., and Boal, D. H. (1975).Physical Review D,11, 1375.

    Google Scholar 

  82. Pant, N. D. (1975).Nuovo Cimento,25B, 175.

    Google Scholar 

  83. Papapetrou, A. (1948).Proceedings of the Royal Irish Academy,52, 96.

    Google Scholar 

  84. Bonnor, W. B. (1951).Proceedings of the Royal Society,210, 427.

    Google Scholar 

  85. Bonnor, W. B. (1951).Proceedings of the Royal Society,209, 353.

    Google Scholar 

  86. Vanstone, J. R. (1962).Canadian Journal of Mathematics,14, 568.

    Google Scholar 

  87. Born, M., and Infeld, L. (1934).Proceedings of the Royal Society A,144, 425.

    Google Scholar 

  88. Abraham, M. (1903).Annalen der Physik,10, 105; Cushing, J. T. (1981).American Journal of Physics,49, 1133.

    Google Scholar 

  89. Campbell, L., and Moffat, J. W. (1982). Black holes in the nonsymmetric theory of gravitation, University of Toronto Report, Toronto, Ontario, Canada.

    Google Scholar 

  90. Demiański, M. (1986).Foundations of Physics,16, 187.

    Google Scholar 

  91. Wheeler, J. A. (1955).Physical Review,97, 511.

    Google Scholar 

  92. Wong, S. K. (1970).Nuovo Cimento A,65, 689.

    Google Scholar 

  93. Dicke, R. H. (1962).Review of Modern Physics,34, 116.

    Google Scholar 

  94. Brans, C., and Dicke, R. H. (1961).Physical Review,124, 925.

    Google Scholar 

  95. Nielsen, H. B., and Patkos, A. (1982).Nuclear Physics B,195, 137.

    Google Scholar 

  96. Fujii, Y. (1975).General Relativity and Gravitation,6, 29.

    Google Scholar 

  97. Gibbons, G. W., and Whitting, B. F. (1981).Nature,291, 636.

    Google Scholar 

  98. Glass, E. N., and Szamosi, G. (1987).Physical Review D,35, 1205.

    Google Scholar 

  99. Bars, J., and Vissers, M. (1986).Physical Review Letters,57, 25.

    Google Scholar 

  100. Sherk, J. (1979).Physics Letters,88B, 265.

    Google Scholar 

  101. Barr, S. M., and Mohapatra, R. N. (1987).Physical Review Letters,57, 3129.

    Google Scholar 

  102. Adelberger, E. G., Stubbs, C. W., Rogers, W. F., Raab, F. J., Heckal, B. R., Gundlach, J. M., Swanson, H. E., and Wantable, R. (1987).Physical Review Letters,59, 59.

    Google Scholar 

  103. Kogut, J. B. (1982).Review of Modern Physics,55, 182.

    Google Scholar 

  104. Lee, T. D. (1979).Physical Review D,19, 1802.

    Google Scholar 

  105. Lee, T. D. (1981).Particle Physics and Introduction to Field Theory, Herwood, New York.

    Google Scholar 

  106. Lehman, H., and Wu, Tsai Tsu (1984).Nuclear Physics B,237, 205; Lehman, H., and Wu, Tsai Tsu (1985).Communications in Mathematical Physics,97, 161.

    Google Scholar 

  107. Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solution of Einstein's Field Equations, Cambridge University Press, Cambridge; Lai, K. B., and Ali, N. (1969). Plane wave solutions of Einstein's unified field equations of nonsymmetric theories in Bondi space-time,Tensor N. S.,20, 131 (1969); Lai, K. B., and Ali, N. (1956). The ((t/z)-type plane wave solutions of the field equations of Einstein's non-symmetric unified field theory in Bondi space-time,Tensor N.S.,6, 299; Takeno, H. (1957). Some wave solutions of Einstein's generalized theory of gravitation,Tensor N. S.,6, 69; Takeno, H. (1957). On some generalized plane wave solutions of non-symmetric unified theory,Tensor N. S.,7, 34; Takeno, H. (1958). On some generalized plane wave solutions of non-symmetric unified field theory, II,Tensor N.S.,8, 71; Zakharow, V. D. (1972).Gravitational Waves in Einstein's Theory of Gravitation, Nauka, Moscow [in Russian].

    Google Scholar 

  108. Mann, R. B., and Moffat, J. W. (1982).Physical Review D,25, 4310.

    Google Scholar 

  109. Mann, R. B., and Moffat, J. W. (1982).Physical Review D,26, 1858.

    Google Scholar 

  110. Bryan, R. A., and Scott, B. L. (1964).Physical Review,135, B434; Brown, G. E. (1972). InElementary Particle Models of Two Nucleon Force, S. M. Austin and G. M. Crawley, eds., Plenum Press, New York, p. 29; Mau Vinh, R. (1977). Nucleon-nucleon potentials and theoretical developments. An overview of the nucleon-nucleon interactions, inNucleon-Nucleon Interaction, ATP Conference Proceedings, No. 41, p. 140.

    Google Scholar 

  111. Rho, M. (1984). Pion interactions within nuclei,Annual Review of Nuclear and Particle Science,14, 54.

    Google Scholar 

  112. De Tar, C. E., and Donoghue, J. F. (1983). Bag model of hadrons,Annual Review of Nuclear and Particle Science,33, 235.

    Google Scholar 

  113. Goldflam, R., and Wilets, L. (1982).Physical Review D,25, 1951.

    Google Scholar 

  114. Friedberg, R., and Lee, T. D. (1978). Quantum chromodynamics and the soliton models of hadronsPhysical Review D,18, 2623.

    Google Scholar 

  115. Isham, C. J., Salam, A., and Strathdee, J. (1971).Physical Review D,3, 867.

    Google Scholar 

  116. Tafel, J., and Trautman, A. (1983).Journal of Mathematical Physics,24, 1087.

    Google Scholar 

  117. Kalinowski, M. W. (1986).International Journal of Theoretical Physics,25, 327; Kalinowski, M. W. (1985/1986). Can we get confinement in QCD from higher dimensions,Annales Universitatis Mariae Curie-Sklodowska Sectio AAA,XL/XLI (21), 263.

    Google Scholar 

  118. Peradzyński, Z. (1981). Geometry of nonlinear interactions in partial differential equations, Institute of Fundamental Problems in Technology of Polish Academy of Sciences Report, Warsaw [in Polish]; Grundland, A., and Zelazny, R. (1983).Journal of Mathematical Physics,24, 2305;Journal of Mathematical Physics,24, 2315; Kalinowski, M. W. (1982).Letters in Mathematical Physics,6, 17; Kalinowski, M. W. (1983).Letters in Mathematical Physics,7, 479; Kalinowski, M. W. (1984).Journal of Mathematical Physics,25, 2620; Kalinowski, M. W., and Grundland, A. (1986).Journal of Mathematical Physics,27, 1906; Kalinowski, M. W. (1985).International Journal of Theoretical Physics,24, 957; Bullough, R. K., and Caudrey, P. J., ed. (1980).Solitons, Springer-Verlag, Berlin; Eilenberg, G. (1983).Solitons, Mathematical Methods for Physicists, Springer-Verlag, Berlin; Novikov, P. S., ed. (1980).Theory of Solitons, the Inverse Scattering Method, Mir, Moskow [in Russian]; Chodos, A., Hadjimichael, E., and Tze, C., eds. (1984).Solitons in Nuclear and Elementary Particle Physics, World Scientific Singapore.

  119. Skyrme, R. H. T. (1961).Proceedings of the Royal Society A,260, 127; Adkins, G. S., Nappi, R. C., and Witten, E. (1982). Static properties of nucleons in the Skyrme model, inProceedings of the Third Annual JCTP Summer Workshop on Particle Physics, Miramare-Trieste, p. 170; Kölbermann, G., and Eisenberg, J. M. (1987).Physics Letters B,188, 311; Kölbermann, G., Eisenberg, J. M., and Silbar, R. R. (1986).Physics Letters B,179, 4; Kölbermann, G., and Eisenberg, J. M. (1988). Further investigations of the NN interaction in the Skyrme model, Preprint, Institut für Theoretische Physik, Frankfurt Universität.

    Google Scholar 

  120. Thomas, A. W. (1982). Chiral symmetry and the bag model: A new starting point for nuclear physics, TH3368-CERN TRI-PP-82-29.

  121. Mihich, L. (1983).Nuovo Cimento,70B, 115.

    Google Scholar 

  122. Bekenstein, D. J. (1977).Physical Review D,15, 1458.

    Google Scholar 

  123. Hamel, G. (1949).Theoretische Mechanik, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinowski, M.W. Nonsymmetric Kaluza-Klein and Jordan-Thiry theory in a general non-Abelian case. Int J Theor Phys 30, 281–399 (1991). https://doi.org/10.1007/BF00674972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00674972

Keywords

Navigation