International Journal of Theoretical Physics

, Volume 32, Issue 1, pp 63–88 | Cite as

Complex geometry, unification, and quantum gravity. I. The geometry of elementary particles

  • Thomas R. Love
Article

Abstract

The Poincaré group is replaced byU(3, 2), the pseudounitary extension of the de Sitter groupSO(3, 2), as internal and space-time symmetries are combined in a geometric setting which invalidates the no-go theorems. A new model of elementary particles as vertical vectors on the principal fiber bundleU(3, 2) →U(3, 2)/U(3, 1)×U(1) is introduced and their interactions via Lie bracket analyzed. The model accounts for the four known superselection rules: spin, electric charge, baryon number, and lepton number.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., and Marsden, J. (1979).Foundations of Mechanics, 2nd ed., Benjamin, New York.Google Scholar
  2. Barut, A. O. (1980). inSymmetries in Science (B. Gruber and R. S. Milman, eds.,), Plenum Press, New York.Google Scholar
  3. Bohm, A. (1986). Quantum mechanics and spectrum generating groups and supergroups, inSymmetries in Science II (B. Gruber and R. Lenczewski, eds.), Plenum Press, New York.Google Scholar
  4. Burgoyne, N. (1958).Nuovo Cimento,8, 607.Google Scholar
  5. Charon, J. E. (1988).Complex Relativity: Unifying All Four Physical Interactions, Paragon-House, New York.Google Scholar
  6. Coleman, S. (1967). The past of a delusion: Attempts to wed internal and space-time symmetries, inSymmetry Principles and Fundamental Particles (B. Kursunoglu and A. Perlmutter, ed.), Freeman, San Francisco.Google Scholar
  7. Dyson, F. (1966).Symmetry Groups in Particle Physics, Benjamin, New York.Google Scholar
  8. Foldy, L. L., and Wouthuysen, S. A. (1950).Physical Review,78, 29–36.Google Scholar
  9. Fubini, S., Hanson, A. J., and Jackiw, R. (1973).Physical Review D,7, 1732.Google Scholar
  10. Georgi, H. (1982).Lie Algebras in Particle Physics: From Isospin to Unified Theories, Benjamin/ Cummings, Menlo Park, California.Google Scholar
  11. Georgi, H., and Glashow, S. L. (1974).Physics Review Letters,32, 438.Google Scholar
  12. Gunaydin, M., and Saclioglu, C. (1982).Physics Letters,108B, 180.Google Scholar
  13. Halpern, L. (1983). Generalizations of gravitational theory based on group covariance, inGauge Theory and Gravitation (K. Kikkawa, N. Nakanishi, and H. Nariai, eds.), Springer-Verlag, New York.Google Scholar
  14. Hermann, R. (1972).Journal of Mathematical Physics,13, 97.Google Scholar
  15. Hermann, R. (1977). Appendix on quantum mechanics, in R. Nolan Wallach,Symplectic Geometry and Fourier Analysis, MathSci Press.Google Scholar
  16. Hermann, R. (1980). Bohr-Sommerfeld quantization in general relativity and other nonlinear field and particle theories, inQuantum Theory and Gravitation (A. R. Marlow, ed.), Academic Press, New York.Google Scholar
  17. Kaiser, G. (1990).Quantum Physics, Relativity, and Complex Spacetime, North-Holland, Amsterdam.Google Scholar
  18. Kursunoglu, B. (1979). A non-technical history of the generalized theory of gravitation dedicated to the Albert Einstein centennial, inOn the Path of Albert Einstein (B. Kursunoglu, A. Perlmutter, and L. F. Scott, eds.), Plenum Press, New York.Google Scholar
  19. Lipkin, H. J. (1965).Physical Review,139B, 1633.Google Scholar
  20. Love, T. R. (1984).International Journal of Theoretical Physics,23, 801.Google Scholar
  21. Love, T. R. (1987). The geometry of elementary particles, Dissertation, University of California, Santa Cruz, California.Google Scholar
  22. Lurcat, F. (1964).Physics,1, 95–106.Google Scholar
  23. Pais, A. (1986).Inward Bound, Oxford University Press, New York.Google Scholar
  24. Pleblanski, J. (1975).Journal of Mathematical Physics,16, 2395–2402.Google Scholar
  25. Preparata, G. (1979). Quark-geometrodynamics: A new approach to hadrons and their interactions, inThe Ways of Subnuclear Physics (Antonio Zichichi, ed.), Plenum Press, New York.Google Scholar
  26. Rawnsley, J., Schmid, W., and Wolf, J. (1983).Journal of Functional Analysis,51, 1–114.Google Scholar
  27. Rosen, N. (1962).Annals of Physics,19, 165–172.Google Scholar
  28. Roman, P. (1980). Relativistic dynamical groups in quantum theory and some possible applications, inSymmetries in Science (B. Gruber and R. S. Milman, eds.), Plenum Press, New York, p. 327.Google Scholar
  29. Schweber, S. S. (1961).An Introduction to Relativistic Quantum Field Theory, Harper and Row, New York.Google Scholar
  30. Segal, I. E. (1963).Mathematical Problems of Relativistic Physics, American Mathematical Society, Providence, Rhode Island.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Thomas R. Love
    • 1
  1. 1.Department of Mathematical SciencesUniversity of Nevada-Las VegasLas Vegas

Personalised recommendations