Quantum logical description of two-particle systems

  • A. A. Grib
  • R. R. Zapatrin


The quantum logical way of simulating quantum systems by automata is considered for two-particle systems. As an example, the EPR experiment with two spin-1/2 particles is considered and the violation of Bell's inequalities is demonstrated. Some methodological implications of the proposed approach are discussed.


Field Theory Elementary Particle Quantum Field Theory Quantum System Logical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Finkelstein, D. (1963). The logic of quantum physics,Transactions of the New York Academy of Science II,25, 621.Google Scholar
  2. Finkelstein, D., and Finkelstein, S. R. (1982).International Journal of Theoretical Physics,22, 753.Google Scholar
  3. Grib, A. A. (1984).Soviet Physics-Uspekhi,142(4).Google Scholar
  4. Grib, A. A., and Zapatrin, R. R. (1990).International journal of Theoretical Physics,29, 131.Google Scholar
  5. Jauch, J. M. (1968).Foundationals of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.Google Scholar
  6. London, F., and Bauer, E. (1939).Théorie de l'observation en méchanique quantique, Gauthier-Villars, Paris.Google Scholar
  7. Lüdwig, G. (1989).Foundations of Physics,19, 971.Google Scholar
  8. Szabó, L. (1989).International Journal of Theoretical Physics,28, 35.Google Scholar
  9. Zapatrin, R. R. (1990a). Graph representation of finite ortholattices, inSecond Winter School on Measure Theory, A. Dvurecenskij and S. Pulmannová eds. (Liptovský Ján, Czechoslovakia, January 6–13, 1990) pp. 213–218.Google Scholar
  10. Zapatrin, R. R. (1990b). Graphs, polarities and finite ortholattices,Discrete Mathematics, submitted.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. A. Grib
    • 1
  • R. R. Zapatrin
    • 1
  1. 1.Department of MathematicsLeningrad Finance and Economical InstituteLeningradUSSR

Personalised recommendations