International Journal of Theoretical Physics

, Volume 31, Issue 7, pp 1093–1101 | Cite as

Topology lattice as quantum logic

  • A. A. Grib
  • R. R. Zapatrin
Article

Abstract

We discuss the relations between the lattice of topologies for the simplest case of a three-point set and quantum logic. A hypothetical “topologymeter” is considered as a measuring apparatus, and it is shown that it necessarily possesses some quantum features, such as complementarity.

Keywords

Field Theory Elementary Particle Quantum Field Theory Measuring Apparatus Quantum Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D'Espagnat, B. (1976).Conceptual Foundations of Quantum Mechanics, Benjamin.Google Scholar
  2. Finkelstein, D. (1963).Transactions of the New York Academy of Science,11, 621.Google Scholar
  3. Grib, A. A., and Zapatrin, R. R. (1990).International Journal of Theoretical Physics,29, 131.Google Scholar
  4. Grib, A. A., and Zapatrin, R. R. (1991).International Journal of Theoretical Physics,30, 949.Google Scholar
  5. Isham, C. (1989).Classical and Quantum Gravity,6, 1509.Google Scholar
  6. Kalmbach, G. (1983).Orthomodular Lattices, Springer.Google Scholar
  7. Larson, R. F., and Andima, S. (1975).Rocky Mountain Journal of Mathematics,5, 177.Google Scholar
  8. Zapatrin, R. R. (1989).International Journal of Theoretical Physics,28, 1323.Google Scholar
  9. Zapatrin, R. R. (1992).International Journal of Theoretical Physics,31, 211.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. A. Grib
    • 1
  • R. R. Zapatrin
    • 1
  1. 1.Department of MathematicsLFEI “N. A. Voznesensky,”St. PetersburgRussia

Personalised recommendations