International Journal of Theoretical Physics

, Volume 32, Issue 4, pp 503–516 | Cite as

Generalized Clifford algebras and hyperspin manifolds

  • N. Fleury
  • M. Rausch de Traubenberg
  • R. M. Yamaleev


We consider a special extension of Clifford algebras and show that these generalized Clifford algebras are naturally equipped with a metric defined by a fundamental form of degreen which isSL(n, φ) ⊗SL(n,φ) invariant. Using the embedding of the quaternions in the generalized Clifford algebras, in the Hermitian limit, we obtain an algebraic description of the inclusion of the Minkowski space into the hyperspin manifold.


Manifold Field Theory Elementary Particle Quantum Field Theory Fundamental Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brauer, R., and Weyl, H. (1935).American Journal of Mathematics,57, 425.Google Scholar
  2. Cartan, E. (1898).Annales de la Faculté des Sciences de Toulouse, Mémoire 2.Google Scholar
  3. Cartan, E. (1909). InEncyclopédie des Sciences Pures et Appliquées, Vol. I, Gauthier-Villars, Paris.Google Scholar
  4. Cartan, E. (1938).The Theory of Spinors, Hermann, Paris [Reprinted, Hermann, Paris, 1960].Google Scholar
  5. Duff, M. J., Nilsson, B. E. W., and Pope, C. N. (1986).Physics Reports,130, 1.Google Scholar
  6. Edérlyi, A. (1955).Higher Transcendental Functions, Vol. III, McGraw-Hill, New York, pp. 212–217.Google Scholar
  7. Finkelstein, D. (1986).Physical Review Letters,56, 1532.Google Scholar
  8. Finkelstein, D., Finkelstein, S. R., and Holm, C. (1986).International Journal of Theoretical Physics,25, 441.Google Scholar
  9. Fleury, N., and Rausch de Traubenberg, M.Journal of Mathematical Physics,33, 3356.Google Scholar
  10. Fleury, N., Rausch de Traubenberg, M. and Yamaleev, R. M. (1991). Extended complex numbers and connected trigonometry,Journal of Mathematics Analysis and Applications (to appear).Google Scholar
  11. Jordan, P. (1932).Zeitschrift für Physik,80, 285.Google Scholar
  12. Kwasniewski, A. K. (1985).Journal of Mathematical Physics,26, 2234.Google Scholar
  13. Kwasniewski, A. K. (1992).Advances in Applied Clifford Algebras,2, 107.Google Scholar
  14. Long, F. W. (1976).Journal of the London Mathematical Society,13, 438.Google Scholar
  15. Morinaga, K., and Nono, T. (1952).Journal of Science of Hiroshima University Series A Mathematics Physics Chemistry,16, 13.Google Scholar
  16. Morris, A. O. (1967).Quarterly Journal of Mathematics (Oxford),18, 7.Google Scholar
  17. Morris, A. O. (1968).Quarterly Journal of Mathematics (Oxford),19, 289.Google Scholar
  18. Penrose, R., and Rindler, W. (1984).Spinors and Space-Time, Cambridge University, Cambridge.Google Scholar
  19. Popovici, I., and Ghéorghe, C. (1966a).Comptes Rendus de l'Académie des Sciences Paris Série A,262, 682.Google Scholar
  20. Popovici, I. and Ghéorghe, C. (1966b).Revue Roumaine de Mathématiques Pures et Appliquées,11, 989.Google Scholar
  21. Ramakrishnan, A., Chandrasekaran, P. S., Ranganathan, N. R., Santhanan, T. S., and Vesudevan, R. (1969).Journal of Mathematical Analysis and Applications,27, 164.Google Scholar
  22. Schwinger, J. (1960).Proceedings of the National Academy of Science U.S.A.,46, 570.Google Scholar
  23. Sylvester, J. J. (1884).American Journal of Mathematics,6, 270.Google Scholar
  24. Thomas, E. (1974).Glasgow Mathematical Journal,15, 74.Google Scholar
  25. Wene, G. P. (1984).Journal of Mathematical Physics,25, 414.Google Scholar
  26. Weyl, H. (1932).The Theory of Groups and Quantum Mechanics, E. P. Dutton, pp. 272–280 [Reprinted, Dover, New York, 1950].Google Scholar
  27. Witten, E. (1981).Nuclear Physics B,186, 412.Google Scholar
  28. Yamazaki, K. (1964).Journal of the Faculty of Science University of Tokyo Section 1,10, 147.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • N. Fleury
    • 1
  • M. Rausch de Traubenberg
    • 1
    • 2
  • R. M. Yamaleev
    • 3
  1. 1.Physique ThéoriqueCentre de Recherches Nucléaires et Université Louis PasteurStrasbourg CedexFrance
  2. 2.Institut für Theoretische Physik der Universität HeidelbergHeidelbergGermany
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations