Advertisement

International Journal of Theoretical Physics

, Volume 29, Issue 9, pp 935–961 | Cite as

A Suppes predicate for general relativity and set-theoretically generic spacetimes

  • N. C. A. da Costa
  • F. A. Doria
  • J. A. de Barros
Article

Abstract

We summarize ideas from Zermelo-Fraenkel set theory up to an axiomatic treatment for general relativity based on a Suppes predicate. We then examine the meaning of set-theoretic genericity for manifolds that underlie the Einstein equations. A physical interpretation is finally offered for those set-theoretically generic manifolds in gravitational theory.

Keywords

Manifold Field Theory General Relativity Elementary Particle Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augerstein, B. W. (1984).International Journal of Theoretical Physics,23, 1197.Google Scholar
  2. Bell, J. L. (1985).Boolean-Valued Models and Independence Proofs in Set Theory, Oxford.Google Scholar
  3. Benioff, P. A. (1976a).Journal of Mathematical Physics,17, 618.Google Scholar
  4. Benioff, P. A. (1976b).Journal of Mathematical Physics,17, 629.Google Scholar
  5. Bott, R., and Tu, L. W. (1982).Differential Forms in Algebraic Topology, Springer.Google Scholar
  6. Bourbaki, N. (1957).Théorie des Ensembles, Hermann, Paris.Google Scholar
  7. Cairns, S. S. (1940).Annals of Mathematics,41, 796.Google Scholar
  8. Chaitin, G. J. (1982).International Journal of Theoretical Physics,22, 941.Google Scholar
  9. Chaitin, G. J. (1987).Advances in Applied Mathematics,8, 119.Google Scholar
  10. Cheeger, J., and Kister, J. M. (1970a). Counting topological manifolds, inTopology of Manifolds, J. C. Cantrell and C. H. Edwards, Jr., eds., Markham, Chicago.Google Scholar
  11. Cheeger, J., and Kister, J. M. (1970b).Topology,9, 149.Google Scholar
  12. Cohen, P. J. (1966).Set Theory and the Continuum Hypothesis, Benjamin.Google Scholar
  13. Cohen, P. J., and Hersh, R. (1967).Scientific American,217(12), 104.Google Scholar
  14. Da Costa, N. C. A., and Chuaqui, R. (1988).Erkenntnis,29, 95.Google Scholar
  15. Da Costa, N. C. A., and Doria, F. A. (1989a). Structures, Suppes predicates and Boolean-valued models in physics, preprint, inFestschrift in Honor of V. Smirnov, J. Hintikka, ed., to appear.Google Scholar
  16. Da Costa, N. C. A., and Doria, F. A. (1989b). Suppes predicates for first-quantized physics, preprint.Google Scholar
  17. Da Costa, N. C. A., and French, S. (1990). The Model-theoretic approach in the philosophy of science,Philosophy of Science, to appear.Google Scholar
  18. De Barros, J. A. (1989). M. Sc. thesis, Brazilian Center for Physical Research [in Portuguese].Google Scholar
  19. Doria, F. A., de Barros, J. A., and Ribeiro-da Silva, M. (1987).Bol. Soc. Paran. Matemática, 2nd Series,8, 197.Google Scholar
  20. Feferman, S. (1965).Fundamenta Mathematica,56, 325.Google Scholar
  21. Fischer, A. E. (1970). The theory of superspace, inRelativity, M. Carmeli, S. I. Fickler and L. Witten, eds., Plenum Press, New York.Google Scholar
  22. Freed, D. S., and Uhlenbeck, K. K. (1985).Instantons and Four-Manifolds, MSRI Publications, Springer.Google Scholar
  23. Hinman, P. G. (1978).Recursion-Theoretic Hierarchies, Springer.Google Scholar
  24. Kirby, R. C. (1989).The Topology of 4-Manifolds, Springer.Google Scholar
  25. Kneebone, G. T. (1963).Mathematical Logic and the Foundations of Mathematics, Van Nostrand.Google Scholar
  26. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, I, Wiley.Google Scholar
  27. Krivine, J. L. (1969).Théorie Axiomatique des Ensembles, PUF, Paris.Google Scholar
  28. Kunen, K. (1983).Set Theory, North-Holland, Amsterdam.Google Scholar
  29. Manin, Y. (1977).A Course in Mathematical Logic, Springer.Google Scholar
  30. Massey, W. S. (1967).Algebraic Topology: An Introduction, Harcourt-Brace & World.Google Scholar
  31. Novikov, S., Doubrovine, B., and Fomenko, A. (1987).Géométrie Contemporaine: Méthodes et Applications, III, Mir, Moscow.Google Scholar
  32. Odifreddi, P. G. (1983).Journal of Symbolic Logic,48, 288.Google Scholar
  33. Quinn, F. (1982).Journal of Differential Geometry,17, 503.Google Scholar
  34. Ross, D. K. (1984).International Journal of Theoretical Physics,23, 1207.Google Scholar
  35. Scott, D. S. (1967).Mathematical Systems Theory,1, 89 (1967).Google Scholar
  36. Scott, D. S. (1985). Introduction, to J. L. Bell,Boolean-Valued Models and Independence Proofs in Set Theory, Oxford.Google Scholar
  37. Solovay, R. M. (1970).Annals of Mathematics,92, 1.Google Scholar
  38. Shoenfield, J. (1971). Unramified forcing, inProceedings of the Symposium on Pure Mathematics,13, 357.Google Scholar
  39. Steenrod, N. (1951).The Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey.Google Scholar
  40. Suppes, P. (1967). Set-Theoretical Structures in Science, mimeographed notes, Stanford University.Google Scholar
  41. Taubes, C. H. (1987).Journal of Differential Geometry,25, 363.Google Scholar
  42. Whitehead, J. H. C. (1940).Annals of Mathematics,41, 809.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • N. C. A. da Costa
    • 1
  • F. A. Doria
    • 2
  • J. A. de Barros
    • 3
  1. 1.Institute for Advanced StudiesUniversity of São PauloSão Paulo SPBrazil
  2. 2.IMSSS/Stanford UniversityStanford
  3. 3.Brazilian Center for Physical ResearchRio de Janeiro RJBrazil

Personalised recommendations