International Journal of Theoretical Physics

, Volume 32, Issue 3, pp 489–498 | Cite as

Quantum structures in macroscopic reality

  • D. Aerts
  • T. Durt
  • A. A. Grib
  • B. Van Bogaert
  • R. R. Zapatrin
Article

Abstract

We show that it is possible to construct macroscopic entities that entail a quantum logical structure. We do this by means of the introduction of a simple macroscopic entity and study its structure in terms of lattices and graphs, and show that the lattice is non-Boolean.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, D. (1981). The one and the many, Doctoral dissertation, Vrije Universiteit Brüssel.Google Scholar
  2. Aerts, D. (1982).Foundations of Physics,12, 1131.Google Scholar
  3. Aerts, D. (1985). A possible explanation for the probabilities of quantum mechanics and an example of a macroscopical system that violates Bell inequalities, inRecent Developments in Quantum Logic, P. Mittelstaedt and E. W. Stachow, eds., Wissenschaftverlag, Bibliografisches Institut, Mannheim.Google Scholar
  4. Aerts, D. (1986).Journal of Mathematical Physics,27, 203.Google Scholar
  5. Aerts, D. (1987). The origin of the non-classical character of the quantum probability model, inInformation Complexity and Control in Quantum Physics, A. Blanquiere, S. Diner, and G. Lochak, eds., Springer-Verlag, Berlin.Google Scholar
  6. Aerts, D., and Van Bogaert, B. (1992).International Journal of Theoretical Physics,31, 1839.Google Scholar
  7. Birkhoff, G. (1967).Lattice Theory, American Mathematical Society, Providence, Rhode Island.Google Scholar
  8. Finkelstein, D., and Finkelstein, S. R. (1983).International Journal of Theoretical Physics,22, 753.Google Scholar
  9. Grib, A. A., and Zapatrin, R. R. (1990).International Journal of Theoretical Physics,29(2), 113.Google Scholar
  10. Piron, C. (1976).Foundations of Quantum Physics, Benjamin, New York.Google Scholar
  11. Piron, C. (1990).Mecanique Quantique, Bases et Applications, Presses polytechniques et universitaires romandes.Google Scholar
  12. Randall, C. H., and Foulis, D. J. (1983).Foundations of Physics,13, 843.Google Scholar
  13. Zapatrin, Z. (1988). Automata imitating classical and quantum physical systems. Quantum logic approach,Reports on Mathematical Physics (Warsaw).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • D. Aerts
    • 1
    • 2
  • T. Durt
    • 1
  • A. A. Grib
    • 3
  • B. Van Bogaert
    • 1
  • R. R. Zapatrin
    • 3
  1. 1.Theoretical Physics (TENA)Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Research Associate of the National Fund for Scientific ResearchBelgium
  3. 3.Department of MathematicsUniversity of St. PetersburgSt. PetersburgRussia

Personalised recommendations