Advertisement

International Journal of Theoretical Physics

, Volume 32, Issue 9, pp 1627–1642 | Cite as

Energy-momentum complex in Møller's tetrad theory of gravitation

  • F. I. Mikhail
  • M. I. Wanas
  • Ahmed Hindawi
  • E. I. Lashin
Article

Abstract

Møller's tetrad theory of gravitation is examined with regard to the energymomentum complex. The energy-momentum complex as well as the superpotential associated with Møller's theory are derived. Møller's field equations are solved in the case of spherical symmetry. Twodifferent solutions, giving rise to thesame metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. Some suggestions to get out of this inconsistency are discussed at the end of the paper.

Keywords

Field Theory Elementary Particle Quantum Field Theory Field Equation Spherical Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann, P. G., and Thomson, R. (1953).Physical Review,89, 400.Google Scholar
  2. Eddington, A. S. (1921).The Mathematical Theory of Relativity, Cambridge University Press, Cambridge.Google Scholar
  3. Einstein, A. (1916).Annalen der Physik 4,49, 769.Google Scholar
  4. Einstein, A. (1930).Berlin Akademie Sitzungsberichter,1, 18.Google Scholar
  5. Goldberg, J. N. (1958).Physical Review,111, 315.Google Scholar
  6. Hehl, F. W., Nitsch, J., and von der Heyde, P. (1980). Gravitation and Poincaré gauge field theory with quadratic Lagrangian, inThe Einstein Memorial Volume, A. Held, ed., Plenum Press, New York.Google Scholar
  7. Meyer, H. (1982).General Relativity and Gravitation,14, 531.Google Scholar
  8. Mikhail, F. I., and Wanas, M. I. (1977).Proceedings of the Royal Society of London, A,356, 471.Google Scholar
  9. Møller, C. (1958).Annals of Physics,4, 347.Google Scholar
  10. Møller, C. (1961a).Annals of Physics,12, 118.Google Scholar
  11. Møller, C. (1961b).Matematisk-Fysike Skrifter Danske Videnskabernes Selskab,1(10).Google Scholar
  12. Møller, C. (1978).Matematisk-Fysike Meddelelser Danske Videnskabernes Selskab,39(13), 1.Google Scholar
  13. Müller-Hoissen, F., and Nitsch, J. (1983).Physical Review D,28, 718.Google Scholar
  14. Robertson, H. P. (1932).Annals of Mathematics Princeton,33, 496.Google Scholar
  15. Sáez, D. (1983).Physical Review D,27, 2839.Google Scholar
  16. Sáez, D. (1984).Physics Letters A,106, 293.Google Scholar
  17. Sáez, D. (1985).General Relativity and Gravitation,17, 39.Google Scholar
  18. Sáez, D. (1986).General Relativity and Gravitation,18, 479.Google Scholar
  19. Sáez, D., and de Juan, T. (1984).General Relativity and Gravitation,16, 501.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • F. I. Mikhail
    • 1
  • M. I. Wanas
    • 2
  • Ahmed Hindawi
    • 3
    • 4
    • 5
  • E. I. Lashin
    • 6
    • 7
  1. 1.Department of Mathematics, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Astronomy Department, Faculty of ScienceCairo UniversityCairoEgypt
  3. 3.International Centre for Theoretical PhysicsTriesteItaly
  4. 4.Department of PhysicsUniversity of PennsylvaniaPhiladelphia
  5. 5.Department of Physics, Faculty of ScienceAin Shams UniversityCairoEgypt
  6. 6.Department of Physics, Faculty of ScienceAin Shams UniversityCairoEgypt
  7. 7.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations