International Journal of Theoretical Physics

, Volume 33, Issue 4, pp 819–850

Difference posets, effects, and quantum measurements

  • Anatolij Dvurečenskij
  • Sylvia Pulmannová
Article

Abstract

Difference posets as generalizations of quantum logics, orthoalgebras, and effects are studied. Observables and measures generalizing normalized POV-measures and generalized measures on sets of effects are introduced. Characterization of orthomodularity of subsets of a difference poset in terms of triangle closedness and regularity of these subsets enables us to characterize observables with a Boolean range. Boolean powers of difference posets are investigated; they have similar properties to that of tensor products, and their connection with quantum measurements is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfsen, E. M. (1972).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin.Google Scholar
  2. Bade, W. G. (1955).Transactions of the American Mathematical Society,80, 345–360.Google Scholar
  3. Birkhoff, G., and von Neumann, J. (1936).Annals of Mathematics,37, 823–843.Google Scholar
  4. Busch, P., Lahti, P. J., and Mittelstaed, P. (1991).The Quantum Theory of Measurement, Springer-Verlag, Berlin.Google Scholar
  5. Davies, E. B., (1976).Quantum Theory of Open Systems, Academic Press, New York.Google Scholar
  6. Davies, E. B., and Lewis, J. T. (1970).Communications in Mathematical Physics,17, 239–260.Google Scholar
  7. Cattaneo, G., and Nisticó, G. (1989).Fuzzy Sets and Systems,33, 165–190.Google Scholar
  8. Drossos, C. A., and Markakis, G. (1994).Mathematica Slovaca,43, 1–19.Google Scholar
  9. Dunford, N., and Schwartz, J. T. (1971).Linear Operators, Part III, Wiley-Interscience, New York.Google Scholar
  10. Dvurečenskij, A. (1993).Gleason's Theorem and Its Applications, Kluwer, Dordrecht, Ister Science Press, Bratislava.Google Scholar
  11. Dvurečenskij, A., and Riečan, B. (1994).International Journal of Theoretical Physics, to appear.Google Scholar
  12. Foulis, D. J., and Bennett, M. K. (n.d.). Tensor products of orthoalgebras,Order, to appear.Google Scholar
  13. Foulis, D., and Pták, P. (1993). On the tensor product of a Boolean algebra and an orthoalgebra, Preprint.Google Scholar
  14. Foulis, D., Greechie, R. J., and Rüttimann, G. T. (1992).International Journal of Theoretical Physics,31, 787–807.Google Scholar
  15. Grätzer, G. (1968).Universal Algebras, van Nostrand, Princeton, New Jersey.Google Scholar
  16. Holevo, A. S. (1982).Probability and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam.Google Scholar
  17. Kalmbach, G. (1983).Orthomodular Lattices, Academic Press, New York.Google Scholar
  18. Kolmogorov, A. N. (1933).Grundbegriffe der Wahrscheinlickhkeitsrechnung, Berlin.Google Scholar
  19. Kôpka, F. (1992).Tatra Mountains Mathematical Publications,1, 83–87.Google Scholar
  20. Kôpka, F., and Chovanec, F. (1994).Mathematica Slovaca,44, 21–34.Google Scholar
  21. Lahti, P., and Maczyński, M. J. (1992).Journal of Mathematical Physics,33, 4133–4138.Google Scholar
  22. Luczak, A. (n.d.). Instruments on von Neumann algebras, Preprint, Lodz University.Google Scholar
  23. Ludwig, G. (1983).Foundations of Quantum Mechanics, Vol. 1, Springer-Verlag, New York.Google Scholar
  24. Mackey, G. W. (1963).Mathematical Foundations of Quantum Mechanics, Benjamin, New York.Google Scholar
  25. Mushtari, D. K. (1989).Izvestiya Vuzov matematika,8, 44–52 [in Russian].Google Scholar
  26. Mushtari, D. K., and Matvejchuk, M. S. (1985).Soviet Mathematics Doklady,32, 36–39.Google Scholar
  27. Navara, M., and Pták, P. (n.d.). Difference posets and orthoalgebras, submitted.Google Scholar
  28. Pták, P. (1986).Demonstratio Mathematica,19, 349–357.Google Scholar
  29. Pták, P., and Pulmannová, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht.Google Scholar
  30. Pulmannová, S. (1993a).Tatra Mountains Mathematical Publications,3, 89–100.Google Scholar
  31. Pulmannová, S. (1993b).Reports on Mathematical Physics,32, 235–250.Google Scholar
  32. Pulmannová, S. (1994). Quantum measurements and quantum logics, Preprint SAV.Journal of Mathematical Physics, to appear.Google Scholar
  33. Randall, C., and Foulis, D. (1979). New definitions and theorems, University of Massachusetts Mimeographed Notes, Amherst, Massachusetts, Autumn 1979.Google Scholar
  34. Randall, C., and Foulis, D. (1981). Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., Vol. 5, Wissenscaftsverlag, Bibliographisches Institut, Mannheim, pp. 9–20.Google Scholar
  35. Sikorski, R. (1964).Boolean Algebras, Springer-Verlag, Berlin.Google Scholar
  36. Varadarajan, V. S. (1985).Geometry of Quantum Theory, Springer-Verlag, Berlin.Google Scholar
  37. Von Neumann, J. (1932).Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Anatolij Dvurečenskij
    • 1
  • Sylvia Pulmannová
    • 1
  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations