Structural Chemistry

, Volume 3, Issue 4, pp 245–252 | Cite as

High resolution infrared spectrum and molecular structure of dichloroacetylene

  • D. McNaughton


The infrared spectrum of dichloroacetylene, prepared by the pyrolysis of dichloromaleic anhydride at 1000°C, has been recorded at both low and high resolution. In the low resolution spectrum a number of combination bands not previously observed have been assigned, the infrared active fundamentals have been reassigned, and a center wavenumber value has been determined for the Raman activev1 fundamental. The high resolution spectra of a number of fundamental bands, summation bands, and one difference band for the isotopomers,35CIC≡C35CI and35CIC≡C37CI, have been assigned, while a more limited number of bands has been assigned for the species37CIC≡C37CI and35CI13C≡C35CI. The resultant rotational and vibration-rotation constants have been used to obtainro,re,rs, and partial rs structural parameters. The most reliable bond lengths are obtained from the partialrs treatment and are 164.105(53) pm for the C-CI bond and 119.203(79) pm for the C≡C bond.


High Resolution Pyrolysis Molecular Structure Bond Length Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, W. D.; Senkan, S. M.Environ. Sci. Technol. 1989,23, 442.Google Scholar
  2. 2.
    Reichart, D., Metzlar, M.; Henschler, D.J. Environ. Pathol. Toxicol. 1980,4, 525.Google Scholar
  3. 3.
    Taylor, P. H.; Dellinger, B.Environ. Sci. Technol. 1987,22, 438.Google Scholar
  4. 4.
    Greim, H.; Wolff, T.; Hoefler, M.; Lahaniatis, E.Arch. Toxicol. 1984,56, 74.Google Scholar
  5. 5.
    Pielichowski, J.; Bogdal, D.J. Prakt. Chem. 1989,331, 145.Google Scholar
  6. 6.
    Denis, J. N.; Moyano, A.; Greene, A. E.J. Org. Chem. 1987,52, 3461.Google Scholar
  7. 7.
    Pielichowski, J.; Popielarz, R.Synthesis. 1984,5, 433.Google Scholar
  8. 8.
    August, J.; Kroto, H. W.; McNaughton, D.; Phillips, K.; Walton, D. R. M.J. Molec. Spectrosc. 1988,130, 424.Google Scholar
  9. 9.
    McNaughton, D.; Osman, O. I.; Kroto, H. W.;J. Molec. Struct.,1988,190, 195.Google Scholar
  10. 10.
    McNaughton, D.; Bruget, D. N. B.J. Molec. Spectrosc.1991,150 p.?.Google Scholar
  11. 11.
    Bock, H.; Ried, W.; Stein, U.Chem. Ber. 1981,114, 673.Google Scholar
  12. 12.
    Klaboe, P.; Kloster Jensen, E.; Christensen, D. H.; Johnson, I.Spectrochim. Acta 1970,26A, 1567.Google Scholar
  13. 13.
    Schmeisser, M.; Schroter, H.; Schilder, H.; Masonne, J.; Rosskopf, F.Chem. Ber. 1962,95, 1648.Google Scholar
  14. 14.
    Frisch, M. J.; Head-Gordon, M.; Schlegel, H. B.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, R. L.; Stewart, J. J. P.; Fluder, E. M.; Topiol S.; Pople, J. A.GAUSSIAN 88, Gaussian, Inc., Pittsburgh, PA.Google Scholar
  15. 15.
    Brahms, J. C.; Dailey, W. P.J. Am. Chem. Soc. 1989,111, 8940.Google Scholar
  16. 16.
    McNaughton, D.; McGilvery, D. C.; Shanks, F.J. Molec. Spectrosc.1991,149 p.?.Google Scholar
  17. 17.
    Kraitchman, J.,Amer. J. Phys. 1953,21, 17.Google Scholar
  18. 18.
    Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Schwendeman, R. H.; Ramsay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G.J. Phys. Chem. Ref. Data,1979,15, 619.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • D. McNaughton
    • 1
  1. 1.Department of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations