International Journal of Theoretical Physics

, Volume 18, Issue 4, pp 279–289 | Cite as

Riemannian curvature and the classification of the Riemann and Ricci tensors in space-time

  • W. J. Cormack
  • G. S. Hall


Some theorems proved by Thorpe concerning the connection between the critical point structure of the Riemannian (sectional) curvature function and the Petrov classification are extended. A similar function is defined whose critical point structure is connected with the algebraic classification of the Ricci tensor.


Field Theory Elementary Particle Quantum Field Theory Similar Function Ricci Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bel, L. (1962).Cahier de Physique,16, 59.Google Scholar
  2. Brickell, F., and Clarke, R. S. (1970).Differentiable Manifolds. Van Nostrand, Reinhold, London.Google Scholar
  3. Cormack, W. J., and Hall, G. S. (1979).Journal of Physics A,12, 55.Google Scholar
  4. Ehlers, J., and Kundt, W. (1962). InGravitation, L. Witten, ed, Wiley, New York.Google Scholar
  5. Eisenhart, L. P. (1966).Riemannian Geometry. Princeton University Press, Princeton.Google Scholar
  6. Hall, G. S. (1976).Journal of Physics A,9, 541.Google Scholar
  7. Hall, G. S. (1978).Zeitschrift für Naturforschung,33a, 559.Google Scholar
  8. Milnor, J. (1963).Morse Theory. Princeton University Press, Princeton, New Jersey.Google Scholar
  9. Petrov, A. Z. (1969).Einstein Spaces. Pergamon Press, New York.Google Scholar
  10. Plebanski, J. (1964).Acta Physica Polonica,26, 963.Google Scholar
  11. Sachs, R. K. (1961).Proceedings of the Royal Society of London,A264, 309.Google Scholar
  12. Thorpe, J. A. (1969).Journal of Mathematical Physics,10, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • W. J. Cormack
    • 1
  • G. S. Hall
    • 1
  1. 1.Department of MathematicsUniversity of AberdeenAberdeenScotland

Personalised recommendations