International Journal of Theoretical Physics

, Volume 33, Issue 1, pp 103–113 | Cite as

Proof theory for minimal quantum logic I

  • Hirokazu Nishimura
Article

Abstract

In this paper we give a sequential system of minimal quantum logic which enjoys cut-freeness naturally. The duality theorem, the cut-elimination theorem, and the completeness theorem with respect to the relational semantics of R. I. Goldblatt are presented. Due to severe limitations of space, technically heavy proofs of the first two theorems are relegated to a subsequent paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruns, G. (1976). Free ortholattices,Canadian Journal of Mathematics,28, 977–985.Google Scholar
  2. Cutland, N. J., and Gibbins, P. F. (1982). A regular sequent calculus for quantum logic in which ⋀ and ⋁ are dual,Logique et Analyse,99, 221–248.Google Scholar
  3. Dalla Chiara, M. L. (1986). Quantum logic, inHandbook of Philosophical Logic, D. Gabbay and F. Guenthner, eds., Reidel, Dordrecht, Volume III, pp. 427–469.Google Scholar
  4. Dishkant, H. (1972). Semantics for the minimal logic of quantum mechanics,Studia Logica,30, 23–36.Google Scholar
  5. Dishkant, H. (1977). Imbedding of the quantum logic in the modal system of Brower,Journal of Symbolic Logic,42, 321–328.Google Scholar
  6. Gentzen, G. (1935). Untersuchungen über das logische Schliessen, I and II,Mathematische Zeitschrift,39, 176–210, 405-431.Google Scholar
  7. Goldblatt, R. I. (1974). Semantical analysis of orthologic,Journal of Philosophical Logic,3, 19–36.Google Scholar
  8. Goldblatt, R. I. (1975). The Stone space of an ortholattice,Bulletin of the London Mathematical Society,7, 45–48.Google Scholar
  9. Goldblatt, R. I. (1984). Orthomodularity is not elementary,Journal of Symbolic Logic,49, 401–404.Google Scholar
  10. Jammer, M. (1974).The Philosophy of Quantum Mechanics, Wiley, New York.Google Scholar
  11. Maeda, S. (1980).Lattice Theory and Quantum Logic, Maki, Tokyo [in Japanese].Google Scholar
  12. Nishimura, H. (1980). Sequential method in quantum logic,Journal of Symbolic Logic,45, 339–352. Nishimura, H. (1983). A cut-free sequential system for the propositional modal logic of finite chains,Publications of RIMS, Kyoto University,19, 305–316.Google Scholar
  13. Takeuti, G. (1975).Proof Theory, North-Holland, Amsterdam.Google Scholar
  14. Tamura, S. (1988). A Gentzen formulation without the cut rule for ortholattices,Kobe Journal of Mathematics,5, 133–150.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Hirokazu Nishimura
    • 1
  1. 1.Institute of MathematicsUniversity of TsukubaIbarakiJapan

Personalised recommendations