Determinism in space-time

  • Folkert Müller-Hoissen


Generalizing a definition given by Budic and Sachs we define the set θ (M) of deterministic points of a space-timeM, and show that θ(M) ≠ Ø implies thatM admits compact achronal slices. Further we give a new characterization of space-times with θ(M)=M. The relation between determinism, existence of particle horizons, and visible Cauchy surfaces is investigated.


Field Theory Elementary Particle Quantum Field Theory Cauchy Surface Deterministic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beem, J. K., and Ehrlich, P. E. (1979).General Relativity and Gravitation,11, 89.Google Scholar
  2. Budic, R., and Sachs, R. K. (1976a).General Relativity and Gravitation,7, 21.Google Scholar
  3. Budic, R., and Sachs, R. K. (1976b). InDifferential Geometry and Relativity, M. Cahen and M. Flato, eds. Reidel, Dordrecht, p. 215.Google Scholar
  4. Chitre, D. M. (1972).Physical Review D,6, 3390.Google Scholar
  5. Doroshkevich, A. G., and Novikov, I. D. (1971).Soviet Astronomy-AJ,14, 763.Google Scholar
  6. Fliche, H. H., and Souriau, J. M. (1979).Astronomy and Astrophysics,78, 87.Google Scholar
  7. Geroch, R. (1970).Journal of Mathematical Physics,11, 437.Google Scholar
  8. Geroch, R., Kronheimer, E. H., and Penrose, R. (1972).Proceedings of the Royal Society of London, Series A,327, 545.Google Scholar
  9. Gunn, J. E., and Tinsley, B. M. (1975).Nature 257, October 9, 454.Google Scholar
  10. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.Google Scholar
  11. Hawking, S. W., and Sachs, R. K. (1974).Communications in Mathematical Physics,35, 287.Google Scholar
  12. Ishikawa, H. (1977).Journal of Mathematical Physics,18, 2375.Google Scholar
  13. Misner, C. W. (1969).Physical Review Letters,22, 1071.Google Scholar
  14. Penrose, R. (1972).Technique of Differential Topology in Relativity, Regional Conference Series in Applied Mathematics 7. SIAM, Philadelphia.Google Scholar
  15. Penrose, R. (1978). InTheoretical Principles in Astrophysics and Relativity, N. R. Lebovitz et al. eds. University of Chicago Press, Chicago, p. 217.Google Scholar
  16. Rindler, W. (1956).Monthly Notices of the Royal Astronomical Society,116, 662.Google Scholar
  17. Rindler, W. (1977).Essential Relativity, second edition. Springer, New York.Google Scholar
  18. Rosquist, K. (1980). “A Relation Between Geodesic Focusing and the Topology of Space-Time,” University of Stockholm, Institute of Theoretical Physics.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Folkert Müller-Hoissen
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of GöttingenGöttingenWest Germany

Personalised recommendations