Quantum theory as a universal physical theory

  • David Deutsch


The problem of setting up quantum theory as a universal physical theory is investigated. It is shown that the existing formalism, in either the conventional or the Everett interpretation, must be supplemented by an additional structure, the “interpretation basis.” This is a preferred ordered orthonormal basis in the space of states. Quantum measurement theory is developed as a tool for determining the interpretation basis. The augmented quantum theory is discussed.


Field Theory Elementary Particle Quantum Field Theory Quantum Theory Orthonormal Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, J. S. (1964).Physics,1, 195.Google Scholar
  2. Bohm, A. (1980). Decaying states in the Rigged Hilbert space formulation of quantum mechanics,J. Math. Phys. 21.Google Scholar
  3. Bohr, N., and Rosenfeld, L. (1933).Kongelige Danske Videnskabernes Selskab Matematisk Fysiske Meddelelser,12(8).Google Scholar
  4. Daneri, A., Loinger, A., and Prosperi, G. M. (1962).Nucl. Phys. 33, 297.Google Scholar
  5. Davies, E. B. (1976).Quantum Theory of Open Systems, Academic Press, London.Google Scholar
  6. d'Espagnat, B. (private communication).Google Scholar
  7. d'Espagnat, B. (1976).Conceptual Foundations of Quantum Mechanics, second ed. W. A. Benjamin, Reading, Massachusetts.Google Scholar
  8. DeWitt, B. S. (1968). The Everett-Wheeler interpretation of quantum mechanics, inBattelle Rencontres, 1967 Lectures in Mathematics and Physics, C. DeWitt and J. A. Wheeler, eds.The Many-Worlds Interpretation of Quantum Mechanics. New York.Google Scholar
  9. DeWitt, B. S. (1970).Physics Today,23, 9.Google Scholar
  10. DeWitt, B. S. (1973). The many-universes interpretation of quantum mechanics, inThe Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. Princeton University Press, Princeton, New Jersey.Google Scholar
  11. DeWitt, B. S., and Graham, N. eds. (1973).The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton, New Jersey.Google Scholar
  12. Einstein, A., Podolski, B., and Rosen, N. (1935).Phys. Rev. 47, 777.Google Scholar
  13. Everett, H. (private communication).Google Scholar
  14. Everett, H. (1957).Rev. Mod. Phys. 29, 454.Google Scholar
  15. Feynman, R. P., Leighton, R. B., and Sands, M. (1965).Lectures on Physics, Vol. 3. Addison Wesley, Reading, Massachusetts.Google Scholar
  16. Gel'fand, I. M., and Shilov, G. E. (1968).Generalized Functions. Academic Press, New York.Google Scholar
  17. George, C., Prigogine, I., and Rosenfeld, L. (1972). The macroscopic level of quantum mechanics,Kongelige Dansk Videnskabernes Selskab Matematisk Fysiske Meddelelser,38, 1.Google Scholar
  18. London, F., and Bauer, E. (1939).La Theorie de l'Observation en Mecanique Quantique. Hermann & Cie., Paris; (English translation)Quantum Theory of Measurement, J. A. Wheeler and W. H. Zurek. Princeton University Press, Princeton, New Jersey (1982).Google Scholar
  19. Misra, B., Prigogine, L., and Courbage, M. (1979). Lyspunov variable; Entropy and measurement in quantum mechanics,Proceedings of the National Academy of Science,76, 4768.Google Scholar
  20. Popper, K. R. (1967).In Quantum Theory and Reality, M. Bunge, ed. Springer, New York.Google Scholar
  21. Schmidt, E. (1907).Math Annalen,63, 433.Google Scholar
  22. Schrödinger, E. (1935).Proceedings of the Cambridge Philosophical Society,31, 555.Google Scholar
  23. Turing, A. M. (1950).Mind,59, 433.Google Scholar
  24. von Neumann, J. (1930).Fundamentos Matemáticos de la Mecánica Cuántica. Institute Jorge Juan, Madrid.Google Scholar
  25. von Neumann, J. (1932/1969).Mathematische Grundlagen der Quantenmechanik. Springer, Berlin. (Dover, New York, 1943).Google Scholar
  26. von Neumann, J. (1946).Les Fondements Mathématiques de la Mécanique Quantique. Alcan, Paris.Google Scholar
  27. von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, New Jersey.Google Scholar
  28. von Neumann, J. (1964).Matematičeskije Osnovi Kvantovoj Mekhaniki, Nauka, Moscow.Google Scholar
  29. Wheeler, J. A. (1957).Rev. Mod. Phys.,29 (3), 463.Google Scholar
  30. Wheeler, J. A. (1977). Genesis and observership, inFoundational Problems in the Social Sciences, Butts and Hintikka, eds., p. 3. D. Reidel Publishing Company, Dordrecht.Google Scholar
  31. Wigner, E. (1961/1962). Remarks on the Mind-body Question, inThe Scientist Speculates, I. J. Good, ed., Chap. VI. Heineman, London/Basic Books, New York.Google Scholar
  32. Zeh, H. D. (1973).Found. Phys.,3, 1.Google Scholar
  33. Zeh, H. D. (1980). Letter to J. A. Wheeler (unpublished).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • David Deutsch
    • 1
    • 2
  1. 1.Center for Theoretical PhysicsThe University of Texas at AustinAustin
  2. 2.Department of AstrophysicsOxford UniversityOxfordEngland

Personalised recommendations