International Journal of Theoretical Physics

, Volume 25, Issue 8, pp 897–904

New look at the large numbers

  • Thomas Görnitz
Article

Abstract

A new interpretation for the large number hypothesis is given, referring to the close connection between the Bekenstein-Hawking entropy and Weizsäckers ur theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bekenstein, J. D. (1973).Physical Review D,7, 2333.Google Scholar
  2. Bekenstein, J. D. (1981).Physical Review D,23, 287.Google Scholar
  3. Castell, L. (1975). InQuantum Theory and the Structures of Time and Space, L. Castell, M. Drieschner, and C. F. v. Weizsäcker, eds, Vol. 1, Hanser, Munich.Google Scholar
  4. Castell, L., Drieschner, M., and Weizsäcker, C. F. v., eds. (1975, 1977, 1979, 1981, 1983, 1985).Quantum Theory and the Structures of Time and Space, Vols. 1–6, Hanser, Munich.Google Scholar
  5. Dirac, P. A. M. (1937).Nature,139, 323.Google Scholar
  6. Dirac, P. A. M. (1938).Proceedings of the Royal Society, A 165, 199.Google Scholar
  7. Drieschner, M. (1973).Voraussage-Wahrscheinlichkeit-Objekt (Lecture Notes in Physics, Vol. 99), Springer, Berlin.Google Scholar
  8. Eddington, A. S. (1931).Proceedings of the Cambridge Philosophical Society,27, 15.Google Scholar
  9. Eddington, A. S. (1936).Relativity Theory of Protons and Electrons, Cambridge University Press, Cambridge.Google Scholar
  10. Görnitz, T. (1985). On the Connection of Abstract Quantum Theory and General Relativity. Part I. The Cosmological Model, Internal Report, Starnberg.Google Scholar
  11. Görnitz, T., and Weizsäcker, C. F. v. (1985). De-Sitter representations and the particle concept in an ur-theoretical cosmological model, InProceedings of the 1985Symposium on Conformal Groups and Structures, Clausthal, to appear.Google Scholar
  12. Hawking, S. W. (1975).Communications in Mathematical Physics,43, 199.Google Scholar
  13. Hellings, R. W., Adams, P. J., Anderson, J. D., Keesey, M. S., Lau, E. L., Standish, E. M., Canuto, V. M., and Goldman, I. (1983),Physical Review Letters,51, 1609.Google Scholar
  14. Jordan, P. (1955).Schwerkraft und Weltall, 2nd ed., Vieweg, Braunschweig.Google Scholar
  15. Jordan, P., Ehlers, J., and Kundt, W. (1964).Zeitschrift für Physik,178, 501.Google Scholar
  16. Ludwig, G. (1951).Fortschritte der projektiven Relativitätstheorie, Vieweg, Braunschweig.Google Scholar
  17. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, p. 1216, Freeman, San Francisco.Google Scholar
  18. Planck, M. (1899).Sitzungsberichte der Deutschen Akademie der Wissenschaften Berlin, Klasse für Mathematik, Physik und Technik,1899, 440.Google Scholar
  19. Weizsäcker, C. F. v. (1971a). The unity of physics, InQuantum Theory and Beyond, T. Bastin, ed., University Press, Cambridge.Google Scholar
  20. Weizsäcker, C. F. v. (1971b).Die Einheit der Natur, Hanser, Munich [English translationThe Unity of Nature, Farrar, Straus, Giroux, New York (1980)].Google Scholar
  21. Weizsäcker, C. F. v. (1973). A comment to Dirac's paper, InThe Physicist's Conception of Nature, J. Mehra, ed., Reidel, DordrechtGoogle Scholar
  22. Weizsäcker, C. F. v. (1985).Der Aufbau der Physik, Hanser, Munich.Google Scholar
  23. Wesson, P. S. (1980).Gravity, Particles and Astrophysics, Reidel, Dordrecht.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Thomas Görnitz
    • 1
  1. 1.Arbeitsgruppe Afheldt an der Max-Planck-GesellschaftStarnbergWest Germany

Personalised recommendations