Journal of comparative physiology

, Volume 126, Issue 2, pp 169–182 | Cite as

The development of hearing in the pallid bat, antrozous pallidus

  • Patricia E. Brown
  • Alan D. Grinnell
  • Jean B. Harrison
Article

Summary

  1. 1.

    Adult pallid bats possess auditory capabilities similar to those of other echolocating Vespertilionids, albeit with unusually great sensitivity to frequencies below 15 kHz.

     
  2. 2.

    Newborn bats show no behavioral or neurophysiological responses to auditory stimuli.

     
  3. 3.

    Evoked potentials were detected first in a six day old bat in response to loud, low frequency sound. Absolute sensitivity and frequency range increase rapidly in the maturing bat. By 24 days, the evoked potential audiogram resembles that of an adult.

     
  4. 4.

    Except for the first week after birth, the infant bat emits only sounds with dominant frequencies it can hear.

     
  5. 5.

    The bat's auditory responsiveness is affected by low temperatures. In the anesthetized bat, cooling will produce a shift in the tuning curve toward lower frequencies. This is accompanied by a loss of sensitivity to higher frequencies with an increase in latency and a decrease in amplitude of the response. This occurred in both adult and juvenile bats. In bats less than two weeks old, all auditory responses disappear below 28 °C.

     
  6. 6.

    The high degree of temporal resolution typical of adult Vespertilionids develops gradually in bats less than two weeks old. In young bats, 40 ms or longer are required for full recovery to the second of two identical stimuli, in contrast to 4 ms in the adult. By the time a bat flies at the age of one month, good temporal resolution has developed.

     
  7. 7.

    Collicular evoked potentials are relatively insensitive to angle of incidence of the signal, but single units show sharp directionality. This appears to develop mostly after about 3 weeks of age and suggests that binaural interaction matures relatively late in development.

     

Abbreviations

EP

Evoked potential

FM

Frequency modulated

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajrapetianz, E.S., Konstantinov, A.I.: Echolocation in animals. Jersusalem: Keter Press 1973Google Scholar
  2. Ajrapetianz, E.S., Vasilyev, A.G.: On neurophysiological mechanisms of the echolocating apparatus in bats (frequency parameters). Int. J. Neurosci.1, 279–286 (1971)Google Scholar
  3. Alford, B.R., Ruben, R.J.: Physiological, behavioral and ana tomical correlates of the development of hearing in the mouse. Ann. Otol.72, 237–247 (1963)Google Scholar
  4. Bradbury, J.W., Emmons, L.H.: Social organization of some Trinidad bats I. Emballonuridae. Z. Tierpsychol.36, 137–183 (1974)Google Scholar
  5. Brown, P.E.: Vocal communication and the development of hearing in the pallid bat,Antrozous pallidus. Ph. D. thesis, UCLA 1973Google Scholar
  6. Brown, P.E.: Vocal communication in the pallid bat,Antrozous pallidus. Z. Tierpsychol.41, 34–54 (1976)Google Scholar
  7. Caley, D.W.: Differentiation of the neural elements of the cerebral cortex in the rat. In: Cellular aspects of neural growth and differentiation (ed. D. Pease), pp. 73–102. Los Angeles: University of California Press 1971Google Scholar
  8. Crowley, D.E., Hepp-Reymond, M.C.: Development of cochlear function in the ear of the infant rat. J. comp. physiol. Psychol.62, 427–432 (1966)Google Scholar
  9. Dalland, J.I.: Hearing sensitivity in bats. Science150, 1185–1186 (1965)Google Scholar
  10. Endroczi, E., Hartmann, G.: Studies on maturation of the brainstem and forebrain connections in newborn rats. In: Ontogenesis of the brain (ed. L. Jilek, S. Trojan), pp. 311–318. Prague: Charles University 1968Google Scholar
  11. Finck, A., Schneck, C.D., Hartman, A.F.: Development of cochlear function in the neonate mongolian gerbil (Meriones unquiculatus). J. comp. physiol. Psychol.67, 319–332 (1972)Google Scholar
  12. Friend, J.H., Suga, N., Suthers, R.A.: Neural responses in the inferior colliculus of echolocating bats to artificial orientation sounds and echoes. J. Cell Physiol.67, 319–332 (1966)Google Scholar
  13. Gaze, R.M.: The formation of nerve connections. New York London: Academic Press 1970Google Scholar
  14. Gould, E.: Echolocation and communication in bats. In: About bats (ed. B.H. Slaughter, D.W. Walton). Dallas: Southern Methodist University Press 1970Google Scholar
  15. Gould, E.: Studies of maternal-infant communication and development of vocalizations in the batsMyotis andEptesicus. Comm. Behav. Biol.5, 263–313 (1971)Google Scholar
  16. Griffin, D.R.: Listening in the dark, New Haven: Yale University Press 1958Google Scholar
  17. Griffin, D.R., Friend, J.H., Webster, F.A.: Target discrimination by the echolocation of bats. J. exp. Zool.158, 155–168 (1965)Google Scholar
  18. Griffin, D.R., McCue, J.J.G., Grinnell, A.D.: The resistance of bats to jamming. J. exp. Zool.152, 229–250 (1963)Google Scholar
  19. Griffin, D.R., Webster, F.A., Michael, C.R.: The echolocation of flying insects by bats. Anim. Behav.8, 141–154 (1960)Google Scholar
  20. Grinnell, A.D.: Neurophysiological correlates of echolocation in ats. Ph.D. thesis. Harvard University, Tech. Report No. 30, Office of Naval Research Control. No. 1866 (12) NR-301-219, 1962Google Scholar
  21. Grinnell, A.D.: The neurophysiology of audition in bats: Intensity and frequency parameters. J. Physiol. (London)167, 38–66 (1963a)Google Scholar
  22. Grinnell, A.D.: The neurophysiology of audition in bats: Temporal parameters. J. Physiol. (London)167, 67–96 (1963b)Google Scholar
  23. Grinnell, A.D.: The neurophysiology of audition in bats: Directional localization and binaural interaction. J. Physiol. (London)167, 97–113 (1963c)Google Scholar
  24. Grinnell, A.D.: The neurophysiology of audition in bats: Resistance to interference. J. Physiol. (London)167, 114–127 (1963d)Google Scholar
  25. Grinnell, A.D.: Mechanisms of overcoming interference in echolocating animals. Vol. 1, In: Animal sonar systems, (ed. R.G. Busnel) pp. 451–481. Jouy-en-Josas: Imprimerie Louis-Jean (Gap) 1967Google Scholar
  26. Grinnell, A.D.: Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z. vergl. Physiol.68, 117–153 (1970)Google Scholar
  27. Grinnell, A.D.: Neural processing mechanisms in echolocating bats correlated with differences in emitted sounds. J. acoust. Soc. Amer.54, 147–156 (1973a)Google Scholar
  28. Grinnell, A.D.: Rebound excitation (off-responses) following nonneural suppression in the cochleas of echolocating bats. J. comp. Physiol.82, 179–194 (1973b)Google Scholar
  29. Grinnell, A.D., Griffin, D.R.: The sensitivity of echolocation in bats. Biol. Bull.114, 10–22 (1958)Google Scholar
  30. Grinnell, A.D., Grinnell, V.S.: Neural correlates of vertical localization by echolocating bats. J. Physiol. (London)181, 830–851 (1965)Google Scholar
  31. Grinnell, A.D., Hagiwara, S.: Adaptations of the auditory nervous system for echolocation: Studies of New Guinea bats. Z. vergl. Physiol.76, 41–81 (1972a)Google Scholar
  32. Grinnell, A.D., Hagiwara, S.: Studies of auditory neurophysiology in nonecholocating bats, and adaptations for echolocation in one genus,Rousettus. Z. vergl. Physiol.76, 82–96 (1972b)Google Scholar
  33. Harrison, J.B.: Temperature effects on responses in the auditory system of the little brown bat,Myotis 1. lucifugus, Physiol. Zool.38, 34–48 (1965)Google Scholar
  34. Hassmannova, J., Rokyta, R., Zahlava, J., Myslivecek, J.: Intercentral relationships in the auditory system during ontogeny. In: Ontogenesis of the brain (ed. L. Jilek, S. Trojan), pp. 319–326. Prague: Charles University 1968Google Scholar
  35. Henson, O.W. Jr.: The activity and function of the middle ear muscles in echolocating bats. J. Physiol. (London)180, 871–887 (1965)Google Scholar
  36. Henson, O.W. Jr.: The perception and analysis of biosonar signals by bats. In: Animal sonar systems (ed. R.G. Busnel), pp. 949–1003. Zouy-en-Josas: Imprimerie Louis-Jean (Gap) 1967Google Scholar
  37. Henson, O.W. Jr: The ear and audition. In: The biology of bats, Vol. 11, Chap. 4 (ed., W. Wimsatt). New York: Academic Press 1971Google Scholar
  38. Jacobson, M.: Developmental Neurobiology. Holt, Rinehard and Winston 1970Google Scholar
  39. Kikuchi, K., Hilding, D.A.: The development of the organ of Corti in the mouse. Acta Oto-Laryngol.60, 207–222 (1965)Google Scholar
  40. Konstantinov, A.I.: Development of echolocation in bats in postnatal ontogenesis. Period. Biol.75, 13–19 (1973)Google Scholar
  41. Konstantinov, A.I., Stosman, I.M.: Electrical activity in the inferior colliculus under the effect of ultrasound stimuli in ontogeny in bats of the genusMyotis oxygnathus. Zh. Evol. Biokhim. Fiziol.8, 182–188 (1972)Google Scholar
  42. Kühl, W.G., Schodder, R., Schröder, R.K.: Condenser transmitters with solid dielectrics for airborn ultrasonics. Acustica4, 519–532 (1954)Google Scholar
  43. Kulikov, G.A.: Effect of cerebral cortex on frequency threshold characteristics of electrical reactions of inferior colliculus of bats. J. evol. biochem. Physiol. (Zh. Evol. Biokhim Fiziol)8, 563–564 (1972)Google Scholar
  44. Long, A.R., Schnitzler, H.-U.: Behavioral audiogram from the bat,Rhinolophus ferrumequinum. J. comp. Physiol.100, 211–219 (1975)Google Scholar
  45. McCue, J.J.G.: Ultrasonic instrumentation for research on bats. I.R.E. International convention record, pp. 310–315. New York: I.R.E. (I.E.E.E.) 1961Google Scholar
  46. Mikaelian, D., Ruben, R.J.: Development of hearing in the normal CBA-J mouse. Acta Oto-Laryngol.59, 451–461 (1965)Google Scholar
  47. Neuweiler, G.: Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen HufeisennaseRhinolophus ferrumequinum Schreber, 1774. Z. vergl. Physiol.67, 273–306. (1970)Google Scholar
  48. Neuweiler, G., Schuller, G., Schnitzler, H.-U.: On and off-responses in the inferior colliculus of the greater horseshoe bat to pure tones. Z. vergl. Physiol.74, 57–63 (1971)Google Scholar
  49. Novick, A.: Echolocation of flying insects by the bat,Chilonycteris psilotis. Biol. Bull.128, 297–314 (1965)Google Scholar
  50. Novick, A., Vaisnys, J.R.: Echolocation of flying insects by the bat,Chilonycteris parnellii. Biol. Bull127, 478–488 (1964)Google Scholar
  51. Orr, R.T.: Natural history of the pallid bat,Antrozous pallidus. Proc. Calif. Acad. Sci28, 165–248 (1954)Google Scholar
  52. Peff, T.C., Simmons, J.A.: Horizontal angle resolution by echolocating bats. J. acoust. Soc. Amer.51, 2063–2065 (1972)Google Scholar
  53. Pollak, G., Henson, O.W., Novick, A.: Cochlear microphonic audiograms in the “pure tone” bat,Chilonycteris parnellii. Science176, 66–68 (1972)Google Scholar
  54. Schlegel, P.: Directional coding by binaural brainstem units of the CF-FM bat,Rhinolophus ferrumequinum. J. comp. Physiol.118, 327–352 (1977)Google Scholar
  55. Schmidt, R.S., Fernandez, C.: Development of mammalian endocochlear potential. J. exp. Zool.153, 227–235 (1963)Google Scholar
  56. Schuller, G., Beuter, K., Schnitzler, H.: Response to frequency shifted artificial echoes in the bat,Rhinolophus ferrumequinum. J. comp. Physiol.89, 275–286 (1974)Google Scholar
  57. Sher, A.E.: The embryonic and postnatal development of the inner ear of the mouse. Acta Oto-Laryngol. (Suppl.)285, 1–77 (1971)Google Scholar
  58. Simmons, J.A.: Echolocation in bats: Signal processing of echoes for target range. Science171, 925–928 (1971)Google Scholar
  59. Simmons, J.A.: Response of the Doppler echolocation system in the batRhinolophus ferrumequinum. J. acoust. Soc. Amer.56, 672–682 (1974)Google Scholar
  60. Simmons, J.A., Vernon, J.A.: Echolocation: Discrimination of targets by the bat,Eptesicus fuscus. J. exp. Zool.176, 312–358 (1971)Google Scholar
  61. Simmons, J.A., Lavender, W.A., Lavender, B.A., Doroshow, C.A., Kiefer, S.W., Livingston, R., Scallet, A.C., Crowley, D.E.: Target structure and echo spectral discrimination by echolocating bats. Science186, 1130–1132 (1974)Google Scholar
  62. Stevens, S.S., Wershofsky, F.: Sound and hearing, Life Sciences Library. New York: Time-Life Books 1971Google Scholar
  63. Stosman, I.M., Konstantinov, A.: Characteristics of evoked potentials of inferior colliculus of the bat,Rhinolophus ferrumequinum. Zh. Evol. Biokhim Fiziol.8, 612–616 (1972)Google Scholar
  64. Suga, N.: Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J. Physiol. (London)175, 50–80 (1964a)Google Scholar
  65. Suga, N.: Single unit activity in cochlear nucleus and inferiorolliculus of echolocating bats. J. Physiol. (London)172, 449–474 (1964b)Google Scholar
  66. Suga, N.: Analysis of frequency modulated sound by auditoryneurons of echolocating bats. J. Physiol. (London)179, 26–53 (1965a)Google Scholar
  67. Suga, N.: Functional properties of auditory neurons in the cortex of echolocating bats. J. Physiol. (London)181, 671–700 (1965b)Google Scholar
  68. Suga, N.: Analysis of frequency modulated and complex sounds by single auditory neurons of bats. J. Physiol. (London) 198, 51–80 (1968)Google Scholar
  69. Suga, N.: Classification of inferior collicular neurones of bats in terms of responses to pure tones, FM sounds and noise bursts. J. Physiol. (London)200, 555–574 (1969)Google Scholar
  70. Suga, N.: Echo-ranging neurons in the inferior colliculus of bats. Science170, 449–452 (1970a)Google Scholar
  71. Suga, N.: Analysis of AM and FM sounds by inferior collicularneurons of echolocating bats. Amer. Zool.10, 309 (1970b)Google Scholar
  72. Suga, N.: Responses of inferior collicular neurones of bats to tone bursts with different rise times. J. Physiol. (London)217, 159–177 (1971)Google Scholar
  73. Suga, N.: Analysis of information-bearing elements in complex sounds by auditory neurons of bats. Audiology11, 58–72 (1972)Google Scholar
  74. Suga, N., Schlegel, P.: Neural attenuation of responses to emitted sounds in echolocating bats. Science177, 82–84 (1972)Google Scholar
  75. Suga, N., Schlegel, P.: Coding and processing in the auditory system of FM signal-producing bats. J. acoust. Soc. Amer.54, 174–90 (1973)Google Scholar
  76. Suga, N., Simmons, J.A., Schimozawa, T.: Neurophysiological studies on echolocation systems in awake bats producing CF FM orientation sounds. J. exp. Biol.61, 379–399 (1974)Google Scholar
  77. Suga, N., Simmons, J.A., Jen, P. H.-S.: Peripheral specialization for analysis of Doppler-shifted echoes in the auditory system of the CF-FM bat,Pteronotus parnellii. J. exp. Biol.63, 161–192 (1975)Google Scholar
  78. Suthers, R.A.: Acoustic orientation by fish-catching bats. J. exp. Zool.158, 319–348 (1965)Google Scholar
  79. Vasilyev, A.G.: A comparative description of the auditory system of bats: Vespertilionidae and Rhinolophidae (Electrophysiological data) Dokl. Akad. Nauk. USSR1975, 1414–1417 (1967)Google Scholar
  80. Weibel, E.R.: Zur Kenntnis der Differenzierungsvorgänge im Epithel des Ductus cochlearis. Acta. Anatomica29, 53–90 (1957)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Patricia E. Brown
    • 1
  • Alan D. Grinnell
    • 1
  • Jean B. Harrison
    • 1
  1. 1.Department of Biology, and Brain Research InstituteUCLALos AngelesUSA

Personalised recommendations