Skip to main content
Log in

Weber electrodynamics: part III. mechanics, gravitation

  • Published:
Foundations of Physics Letters

Abstract

Weber electrodynamics predicts the Kaufmann-Bucherer experiments and the fine structure energy level splitting of the H-atom (neglecting spin) without mass change with velocity (i.e., mass\( \ne {\text{m}}_{\text{0}} /\sqrt {1 - {\text{v}}^{\text{2}} /{\text{c}}^{\text{2}} } \)). The Weber potential for the gravitational case yields Newtonian mechanics, confirming Mach's principle. It provides a cosmological condition yielding an estimated radius of the universe of 8 × 109 light years. Despite these successes, the independent evidence for Kaufmann mechanics, where mass changes with velocity (i.e., mass\({\text{ = m}}_{{\text{ 0 }}} /\sqrt {1 - {\text{v}}^{\text{2}} /{\text{c}}^{\text{2}} } \)) is convincing. Perhaps a slight alteration may make the Weber theory compatible with Kaufmann mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Weber,Abh. Leibnizens Ges., Leip. 316 (1846);Ann. der Phys. 73, 229 (1848);Wilhelm Weber's Werke, Vols. 1–6 (Julius Springer, Berlin, 1893).

  2. G. T. Fechner,Ann. der Phys. 64, 337 (1845).

    Google Scholar 

  3. E. Whittaker,A History of the Theories of Aether and Electricity (Thomas Nelson, London, 1951).

    Google Scholar 

  4. R. Sansbury,Rev. Sci. Instr. 56, 415 (1985).

    Google Scholar 

  5. W. F. Edwards, C. S. Kenyon, and D. K. Lemon,Phys. Rev. D14, 922 (1976).

    Google Scholar 

  6. J. C. Curé, paper to be submitted for publication.

  7. V. Bush,J. Math. Phys. 5, 121 (1926).

    Google Scholar 

  8. A. K. T. Assis,Phys. Lett. A,136, 277 (1989).

    Google Scholar 

  9. W. Kaufmann,Gött. Nachricht. 143 (1901), 291 (1902), 90 (1903);Ann. der Phys. 19, 487 (1906).

  10. A. H. Bucherer,Ann. der Phys. 28, 585;30, 974 (1909).

    Google Scholar 

  11. E. Hupka,Ann. der Phys. 31, 169 (1910).

    Google Scholar 

  12. A. Bestelmeyer,Ann. der Phys. 30, 166 (1909);32, 231 (1910).

    Google Scholar 

  13. G. Neumann,Ann. der Phys. 45, 529 (1914).

    Google Scholar 

  14. C. E. Guye, S. Ratnowsky, and Lavanchy,Mém. Soc. Phys. Genève,39, 273 (1921).

    Google Scholar 

  15. R. A. Tricker,Proc. Roy. Soc. A109, 384 (1925).

    Google Scholar 

  16. C. T. Zahn and A. H. Spees,Phys. Rev. 53, 357, 511 (1938).

    Google Scholar 

  17. M. M. Rogers, A. W. McReynolds, and F. T. Rogers,Phys. Rev. 57, 379 (1940).

    Google Scholar 

  18. P. S. Faragó and L. Jánossy,Il Nuovo Cimento,5, 1411 (1957).

    Google Scholar 

  19. A. Sommerfeld,Ann. der Phys. 51, 1 (1916).

    Google Scholar 

  20. A. K. T. Assis,Found. Phys. Lett. 2, 301 (1989).

    Google Scholar 

  21. E. Mach,The Science of Mechanics, 8th ed. (F. A. Brockhaus, Leipzig, 1921).

    Google Scholar 

  22. J. P. Wesley,Phys. Essays,1, 85 (1988).

    Google Scholar 

  23. J. P. Wesley,Found. Phys. 10, 503 (1980).

    Google Scholar 

  24. S. Marinov,Spec. Sci. Tech. 3, 57 (1980).

    Google Scholar 

  25. J. P. Wesley,Found. Phys. 16, 817 (1986);Causal Quantum Theory (Benjamin Wesley, 7712 Blumberg, West Germany, 1983) pp. 159–163.

    Google Scholar 

  26. W. Voigt,Gött. Nachricht. 41 (1887).

  27. T. E. Phipps, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesley, J.P. Weber electrodynamics: part III. mechanics, gravitation. Found Phys Lett 3, 581–605 (1990). https://doi.org/10.1007/BF00666027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666027

Key words

Navigation