Foundations of Physics Letters

, Volume 3, Issue 5, pp 403–423 | Cite as

A guided tour of new tempered distributions

  • John Schmeelk
Article

Abstract

Laurent Schwartz, the principle architect of distribution theory, presented the impossibility of extending a form of multiplication to distribution theory. There have been many varieties of partial solutions to this problem. Some of the solutions contain heuristic computations done by physicists in quantum field theory. A recent strategy developed by J. Colombeau culminates with multiplication and integration theory for distributions. This paper develops this theory in the spirit of a sequence approach, much like fundamental sequences are to distributions. However, in the new tempered distribution theory the sequences can be noncountable. T. Todorov developed these techniques for new distributions. However, since so many applications require Fourier analysis, the new tempered distributions provide a natural setting for physics and signal analysis. The paper illustrates the product of two Dirac delta functionals,δ(x)δ(x). Other nonregular distributional products can also be computed in the same manner. The paper culminates with a new application of annihilation and creation operators in quantum field theory.

Key words

rapid-descent test functions tempered distributions multiplications of distributions new generalized functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bargmann, “Remarks on a Hilbert space of analytic functions,”Proc. Nat. Acad. Sc. 48, 199–204 (1962).Google Scholar
  2. 2.
    V. Bargmann, “On Hilbert space of analytic functions and an associated integral transform,”Comm. Pure Appl. Math. 19, 187–214 (1961).Google Scholar
  3. 3.
    V. Bargmann, “A family of related function spaces application to distribution theory, Part II,”Comm. Pure Appl. Math. 20, 1–101 (1967).Google Scholar
  4. 4.
    F. A. Berezin,The Method of Second Quantization (Academic, New York, 1966).Google Scholar
  5. 5.
    N. N. Bogolubov, T. T. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, New York, 1975).Google Scholar
  6. 6.
    R. Bracewell,The Fourier Transform and its Applications (McGraw-Hill, New York, 1986).Google Scholar
  7. 7.
    J. F. Colombeau, “Some aspects of infinite-dimensional holomorphy in mathematical physics,” inAspects of Mathematics and its Applications, J. A. Barroso, ed. (Elsevier, Amsterdam, 1986), pp. 253–263.Google Scholar
  8. 8.
    J. F. Colombeau,Differential Calculus and Holomorphy (North-Holland Mathematical Studies, No. 64) (North-Holland, New York, 1982).Google Scholar
  9. 9.
    J. F. Colombeau,New Generalized Functions and Multiplication of Distributions (North-Holland Mathematical Studies, No. 84) (North-Holland, New York, 1984).Google Scholar
  10. 10.
    J. F. Colombeau,Elementary Introduction to New Generalized Functions (North-Holland Mathematical Studies, No. 113) (North-Holland, New York, 1985).Google Scholar
  11. 11.
    J. F. Colombeau, “A multiplication of distributions,”J. Math. Ann. Appl. 94 (1), 96–115 (1983).Google Scholar
  12. 12.
    J. F. Colombeau and A. Y. le Roux, “Generalized functions and products appearing in equations of physics,” preprint.Google Scholar
  13. 13.
    F. Constantinescu,Distributions and Their Applications in Physics (Pergamon, New York, 1980).Google Scholar
  14. 14.
    K. Cooke and J. Wiener, “Distributions and analytic solutions of functional differential equations,”J. Math. Ann. Appl. 98 (1), 111–129 (1984).Google Scholar
  15. 15.
    N. Despotovic and A. Takaći, “On the distributional Stieltjes transformation,”Int. J. Math. Sci. 9 (2), 313–317 (1986).Google Scholar
  16. 16.
    P. A. M. Dirac,Principles of Quantum Mechanics (Oxford University Press, Oxford, 1967).Google Scholar
  17. 17.
    A. Friedman,Generalized Functions and Partial Differential Equations (Prentice-Hall, Englewood Cliffs, 1963).Google Scholar
  18. 18.
    R. Gonzalez and P. Wintz,Digital Image Processing (Addison-Wesley, Reading, 1987).Google Scholar
  19. 19.
    D. Kastler,Introduction a l'electrodynamique quantique (Dunod, Paris, 1961).Google Scholar
  20. 20.
    G. Köthe, “Dualitat in der Funktionentheorie,”J. Reine Angew. Math. 191, 30–49 (1953).Google Scholar
  21. 21.
    G. Köthe and O. Toeplitz, “Lineare Raume mit unendlichvielen Koordinaten und Ringe unendlicher Matrizen,”J. Reine Angew. Math. 171, 193–226 (1934).Google Scholar
  22. 22.
    G. Köthe,Topological Vector Spaces I (Springer, New York, 1969).Google Scholar
  23. 23.
    P. Kristensen, I. Mejlbo and E. T. Poulsen, “Tempered distribution in infinitely many dimensions I: Canonical field operators,”Comm. Math. Phys. 1, 175–214 (1965).Google Scholar
  24. 24.
    P. Kristensen, I. Mejlbo and E. T. Poulsen, “Tempered distribution in infinitely many dimensions II: Displacement operators,”Math. Scand. 14, 129–150 (1964).Google Scholar
  25. 25.
    P. Kristensen, “Tempered distribution in infinitely many dimensions III: Linear transformations of field operators,”Comm. Math. Phys. 6, 29–48 (1967).Google Scholar
  26. 26.
    T. P. G. Liverman,Generalized Functions and Direct Operational Methods (Prentice-Hall, Englewood Cliffs, 1964).Google Scholar
  27. 27.
    E. G. Manovkian,Renormalization (Academic, New York, 1983).Google Scholar
  28. 28.
    G. Marinescu,Espaces vectorials pseudo-topolgiques et theorie des distributions (VEB Deutscher Verlag der Wissenschaften, Berlin, 1963).Google Scholar
  29. 29.
    K. Markov, “Application of Volterra-Wiener series for bounding the overall conductivity of heterogeneous media I: General procedure,”Siam J. Appl. Math. 47, 836–870 (1987).Google Scholar
  30. 30.
    M. Oberguggenberger, “Weak limits of solutions to semilinear hyperbolic systems,”Math. Ann. 274, 599–607 (1986).Google Scholar
  31. 31.
    M. Oberguggenberger, “Products of distributions,”J. Reine Angew. Math. 365, 1–11 (1986).Google Scholar
  32. 32.
    A. Oppenheim and R. W. Schafer,Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1975).Google Scholar
  33. 33.
    A. Papoulis,Signal Analysis (McGraw-Hill, New York, 1977).Google Scholar
  34. 34.
    J. Persson, “Invariance of the Caushy problem for distributional differential equations,”Proceedings, 1987 Generalized Function Conference in Dubrovnik, Yugoslavia (Dellen, New York, 1988).Google Scholar
  35. 35.
    S. Pilipovic, “On the quasiasymptotic behavior of the Stieltjes transformation of distributions,”Publ. Inst. Mathematique 40, 143–152 (1986).Google Scholar
  36. 36.
    S. Pilipovic, “Structural theorems for periodic ultradistributions,”Proc. Am. Math. Soc. 98 (2), 261–266 (1986).Google Scholar
  37. 37.
    C. K. Raju, “Products and composition with the Dirac delta function,”J. Phys. A: Math. Gen. 15, 381–396 (1982).Google Scholar
  38. 38.
    C. M. Roumieu, “Sur quelques extensions de la notion de distributions,”Ann. Scient. E. Norm. Sup 77, 41–121 (1960).Google Scholar
  39. 39.
    J. Rzewuski, “On a triplet including the Hilbert space of entire functionals,”Bull. Acad. Polon. Sc., Ser. Sc. Math. Astro. Phys. 17 (7), 459–466 (1969).Google Scholar
  40. 40.
    J. Rzewuski, “On a Hilbert space of functional power series,”Bull. Acad. Polon. Sc., Ser. Sc. Math. Astro. Phys. 18 (11), 677–685 (1970).Google Scholar
  41. 41.
    J. Rzewuski, “On entire functionals in quantum field theory,”Rep. Math. Phys. 1 (1), 1–27 (1970).Google Scholar
  42. 42.
    J. Rzewuski, “Some estimates for generating functionals with an application to quantum field theory,”Bull. Acad. Polon. Sc., Ser. Sc. Math. Astro. Phys. 19 (3), 235–249 (1971).Google Scholar
  43. 43.
    L. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1968).Google Scholar
  44. 44.
    J. Schmeelk, “An infinite dimensional Laplacian operator,”J. Diff. Eq. 36 (1), 74–88 (1980).Google Scholar
  45. 45.
    J. Schmeelk, “Applications of test surfunctions,”Appl. Anal. 17 (3), 169–185 (1984).Google Scholar
  46. 46.
    J. Schmeelk, “Infinite-dimensional parametric distributions,”Appl. Anal. 24, 291–317 (1987).Google Scholar
  47. 47.
    J. Schmeelk, “Infinite dimensional Fock spaces and associated creation and annihilation operators,”J. Math. Anal. Appl. 134 (2), 111–141 (1988).Google Scholar
  48. 48.
    L. Schwartz,Theorie des distributions (Hermann, Paris, 1966).Google Scholar
  49. 49.
    L. Schwartz, “Impossibilte de la multiplication des distributions,”C. R. Acad. Sci. (Paris) 239, 847–848 (1954).Google Scholar
  50. 50.
    T. D. Todorov, “Sequential approach to Colombeau's theory of generalized functions,” reprint, International Center for Theoretical Physics, Trieste, Italy, 1987.Google Scholar
  51. 51.
    G. Velo and A. S. Wightman, eds.Renormalization Theory (Proceedings, NATO Advanced Study Institute, International School of Mathematical Physics, Sicily, Italy, August 1975) (Reidel, Dordrecht, 1976).Google Scholar
  52. 52.
    U. S. Vladimirov, Y. N. Drozzinov, and B. I. Zavialow,Tauberian Theorems for Generalized Functions (Kluwer Academic, Dordrecht, 1988).Google Scholar
  53. 53.
    A. S. Wightman and K. O. Friedrich, “Differential equations of mathematical physics,” an Air Force Office of Scientific Research Scientific Report, American University, October 1, 1966.Google Scholar
  54. 54.
    A. S. Wightman and R. F. Streater,PCT, Spin and Statistics and All That (Benjamin, New York, 1964).Google Scholar
  55. 55.
    A. H. Zemanian,Distribution Theory and Transform Analysis (McGraw-Hill, New York, 1965).Google Scholar
  56. 56.
    A. H. Zemanian,Realizability Theory for Continuous Linear Systems (Academic, New York, 1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • John Schmeelk
    • 1
  1. 1.Department of Mathematical SciencesVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations