Advertisement

Foundations of Physics Letters

, Volume 6, Issue 3, pp 233–244 | Cite as

Maximal acceleration, Mach's principle, and the mass of the electron

  • James F. Woodward
Article

Abstract

Recent arguments for an upper limit to the proper acceleration of extended massive bodies are briefly reviewed. A transient mass shift in accelerated objects with non-constant proper mass density, expected in all locally Lorentz-invariant theories of gravitation which satisfy Mach's principle, is considered. This effect affects arguments for a maximal proper acceleration. It is shown that, while the widely discussed upper limit to proper acceleration obtains for rigid bodies with constant proper mass density, the limit ceases to obtain generally if this effect is taken into consideration. Applicability of maximal acceleration arguments to elementary particles is briefly considered in the context of a plausible classical model of the electron (one where the mass of the electron follows from the electronic charge).

Key words

Mach's principle maximal acceleration electron structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. R. Caianiello, M. Gasperini, and G. Scarpetta,Nuovo Cimento 105B, 259–278 (1990).Google Scholar
  2. 2.
    E. R. Caianiello, A. Feoli, M. Gasperini and G. Scarpetta,Intl. J. Theor. Phys. 29, 131–139 (1990).Google Scholar
  3. 3.
    B. Mashhoon,Phys. Lett. A 143, 176–182 (1990).Google Scholar
  4. 4.
    W. R. Wood, G. Papini, and Y. Q. Cai,Nuovo Cimento 104B, 653–663 (1989).Google Scholar
  5. 5.
    M. Toller,Intl. J. Theor. Phys. 29, 963–984 (1990).Google Scholar
  6. 6.
    C. Massa,Nuovo Cimento 104B, 477–479 (1989).Google Scholar
  7. 7.
    E. R. Caianiello, M. Gasperini, and G. Scarpetta,Class. Quantum Grav. 8, 659–666 (1991).Google Scholar
  8. 8.
    D. F. Falla and P. T. LandsbergNuovo Cimento 106B, 669–671 (1991).Google Scholar
  9. 9.
    M. Gasperini,Gen. Rel. Grav. 24, 219–223 (1992).Google Scholar
  10. 10.
    H. E. Brandt,Lett. Nuovo Cimento 38, 522–524 (1983).Google Scholar
  11. 11.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (W. H. Freeman, San Francisco, 1973).Google Scholar
  12. 12.
    W. Rindler,Am. J. Phys. 34, 1174–1178 (1966).Google Scholar
  13. 13.
    E. R. Caianiello,Lett. Nuovo Cimento 32, 65–70 (1981).Google Scholar
  14. 14.
    E. R. Caianiello, S. De Filippo, G. Marmo, and G. Vilasi,Lett. Nuovo Cimento 34, 112–114 (1982).Google Scholar
  15. 15.
    E. R. Caianiello,Lett. Nuovo Cimento 41, 370–372 (1984).Google Scholar
  16. 16.
    W. R. Wood, G. Papini, and Y. Q. Cai,Nuovo Cimento 104B, 361–369, 727 (1989).Google Scholar
  17. 17.
    J. F. Woodward,Found. Phys. Lett. 5, 425–442 (1992).Google Scholar
  18. 18.
    D. Sciami,Mon. Not. Roy. Astron. Soc. 113, 34–42 (1953).Google Scholar
  19. 19.
    D. Sciami,Rev. Mod. Phys. 36, 463–469 (1964).Google Scholar
  20. 20.
    H.-J. Treder, H.-H. von Borzeszkowski, A. van der Merwe, and W. Yourgrau,Fundamental Principles of General Relativity Theories (Plenum, New York, 1980).Google Scholar
  21. 21.
    G. Fiorentini, M. Gasperini, and G. Scarpetta,Mod. Phys. Lett. A 6, 2033–2037 (1992).Google Scholar
  22. 22.
    R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 120, 313–320 (1960).Google Scholar
  23. 23.
    R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 120, 321–324 (1960).Google Scholar
  24. 24.
    R. Arnowitt, S. Deser and C. W. Misner, in L. Witten, ed.,Gravitation: An Introduction to Current Research (Wiley, New York, 1962), pp. 227–265.Google Scholar
  25. 25.
    A. Ashtekar,Ann. N. Y. Acad. Sci. 571, 16–26 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • James F. Woodward
    • 1
  1. 1.Departments of History and PhysicsCalifornia State UniversityFullertonUSA

Personalised recommendations