Oxidation of Metals

, Volume 38, Issue 5–6, pp 323–345 | Cite as

Oxide scale adhesion and impurity segregation at the scale/metal interface

  • Peggy Y. Hou
  • John Stringer
Article

Abstract

The chemistry at scale/metal interfaces was studied using scanning Auger microscopy after removal of the scale in ultra-high vacuum using an in situ scratching technique. Al2O3 and Cr2O3 scales formed between 900°C and 1100°C on Fe-18 wt.% Cr-5 wt.% Al and on Ni-25 wt.% Cr alloys, respectively, were investigated. The adhesion of these scales was determined qualitatively by way of micro-indentation and scratching on the surface oxide. All of the alumina scales fractured to the same degree to expose the metal surface, regardless of the oxidation temperature. The chromia-forming alloy on the other hand, developed more adherent scales at lower oxidation temperatures. About 20 at.% sulfur was found at the metal surface in all cases, and its presence was not only detected on interfacial voids, but also on areas where the scale was in contact with the alloy at temperature. Results from this study clearly demonstrated that sulfur as an alloying impurity does segregate to the scale/alloy interface. However, for alumina scales and chromia scales, the effect of this segregation on oxide adhesion is noticeably different.

Key words

sulfur segregation scale adhesion Al2O3 scale Cr2O3 scale scale/alloy interface scratch adhesion test micro-indentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Whittle and J. Stringer,Phil. Trans. Roy. Soc. London A27, 309 (1979).Google Scholar
  2. 2.
    Y. Ikeda, K. Nii, and K. Yoshihara,Trans. Jpn. Inst. Met. Suppl. 24, 207 (1983).Google Scholar
  3. 3.
    A. W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein,Metall. Trans. 16A, 1164–1165 (1985).Google Scholar
  4. 4.
    D. G. Lees,Oxid. Met. 27, 75 (1987).Google Scholar
  5. 5.
    K. L. Luthra and C. L. Briant,Oxid. Met. 26, 397–416 (1986).Google Scholar
  6. 6.
    J. L. Smialek and R. Browning, inHigh Temperature Materials Chemistry III, Z. A. Munir and D. Cubicciotti, eds. (The Electrochem. Soc., Pennington, NJ, 1986), pp. 258–272.Google Scholar
  7. 7.
    J. G. Smeggil and G. G. Peterson,Oxid. Met. 29, 103–119 (1988).Google Scholar
  8. 8.
    C. G. H. Walker and M. M. El Comati,Appl. Surf. Sci. 35, 164–172 (1988/89).Google Scholar
  9. 9.
    H. J. Grabke, D. Wiemer, and H. Viefhaus,Appl. Surf. Sci. 47, 243–250 (1991).Google Scholar
  10. 10.
    P. Y. Hou and J, Stringer, inMicroscopy of Oxidation, M. J. Bennett and G. W. Lorimer, eds. (Institute of Metals, 1991), p. 1345.Google Scholar
  11. 11.
    S. S. Chiang, D. B. Marshall, and A. G. Evans, inSurfaces and Interfaces in Ceramic and Ceramic-Metal Systems, J. Pask and A. G. Evans, eds. (Plenum, New York, 1981), pp. 603–617.Google Scholar
  12. 12.
    J. Valli,J. Vac. Sci. Technol. A4 (6), 3007–3014 (1986).Google Scholar
  13. 13.
    R. M. Cannon, R. M. Fisher, and A. G. Evans, inThin Films-Interfaces and Phenomena, Vol. 54, R. J. Nemanich, P. S. Ho, and S. S. Lau, eds. (MRS Symp. Proc. 1986), pp. 799–804.Google Scholar
  14. 14.
    P. Fox, D. G. Lees, and G. W. Lorimer,Oxid. Met. 36, 491–503 (1991).Google Scholar
  15. 15.
    J. Benard, ed.,Adsorption on Metal Surfaces—An Integrated Approach, Vol. 13 (Studies in Surface Science and Catalysis, Elsevier, 1983), pp. 55–97.Google Scholar
  16. 16.
    H. J. Grabke, W. Paulitschke, G. Tauber, and J. Viefhaus,Surf. Sci. 63, 377–389 (1977).Google Scholar
  17. 17.
    J. E. Harris,Acta Metall. 26, 1033–1041 (1978).Google Scholar
  18. 18.
    J. Stringer,Metall. Rev. 11, 113–128 (1966).Google Scholar
  19. 19.
    H. Hindam and D. P. Whittle,Oxid. Met. 18, 245–284 (1982).Google Scholar
  20. 20.
    J. G. Smeggil,Mater. Sci. Eng. 87, 261 (1987).Google Scholar
  21. 21.
    J. L. Smialek, inCorrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds. (TMS, 1989), pp. 425–457.Google Scholar
  22. 22.
    D. R. Sigler,Oxid. Met. 29, 23–43 (1988).Google Scholar
  23. 23.
    T. N. Rhys-Jones and H. J. Grabke,Mater. Sci. Tech. 4, 446–454 (1988).Google Scholar
  24. 24.
    I. Melas and D. G. Lees,Mater. Sci. Tech. 4, 455–456 (1988).Google Scholar
  25. 25.
    J. G. Smeggil,Corrosion and Particle Erosion at High Temperatures, V. Srinivasan and K. Vedula, eds. (TMS, 1989), pp. 403–424.Google Scholar
  26. 26.
    J. L. Smialek, inMicroscopy of Oxidation, M. J. Bennett and G. W. Lorimer, eds. (Institute of Metals, 1991), pp. 258–270.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Peggy Y. Hou
    • 1
  • John Stringer
    • 2
  1. 1.Materials Sciences DivisionLawrence Berkeley LaboratoryBerkeley
  2. 2.Electric Power Research InstitutePalo Alto

Personalised recommendations