Oxidation of Metals

, Volume 37, Issue 1–2, pp 1–12 | Cite as

Influence of grain size on the oxidation resistance of 2 4 1 Cr-1Mo steel

  • R. K. Singh Raman
  • A. S. Khanna
  • R. K. Tiwari
  • J. B. Gnanamoorthy


The effect of grain size on the oxidation of a 2 4 1 Cr-1Mo steel has been studied at 823 K in air. The oxidation rate was found to decrease with increasing grain size (varied form 16 to 59 μm). The decrease in oxidation rate with increasing grain size is attributed to the smaller grain-boundary area which results in a decrease in the short-circuit-diffusion paths. The enhancement in the oxidation rate with decreasing grain size has been confirmed further by acoustic emission (AE) tests which show more AE activity for smaller-grain-size specimens during oxidation as well as during cooling following the oxidation, indicating a faster oxidation rate and thicker scale, leading to more cracking and spailing.

Key words

ferritic steel grain size oxidation resistance 241Cr-1Mo steel annealing acoustic emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Leistikow, I. Wolf, and H. J. Grabke,Werkst. Korros. 38, 556 (1987).Google Scholar
  2. 2.
    Y. Shida, N. Ohtsuka, J. Murayama, N. Fujino, and H. Fujikawa, Proc. JIMIS-3:High Temp. Corros., Trans. Jpn. Inst. Met. 63, (1983).Google Scholar
  3. 3.
    M. Kowaka and S. Nagata, inCorros. Sci.,21, 819, F. Abeet al., eds. (1981).Google Scholar
  4. 4.
    R. K. Singh Raman, R. K. Dayal, A. S. Khanna, and J. B. Gnanamoorthy,J. Mater. Sci. Lett. 8, 277 (1989).Google Scholar
  5. 5.
    F. Abe, H. Araki, H. Yoshida, M. Okada, and R. Watnabe,Corros. Sci. 21, 819 (1981).Google Scholar
  6. 6.
    A. S. Khanna, W. J. Quadakkers, and H. Schuster, Proc. EUROCORR '88, Brighton, U.K. (1988).Google Scholar
  7. 7.
    R. K. Dayal, N. Parvathavarthini, J. B. Gnanamoorthy, P. Rodriguez, and Y. V. R. K. Prasad,Mater. Lett. 2(3), 244 (1984).Google Scholar
  8. 8.
    B. B. Jha, Baldev Raj, A. S. Khanna, D. K. Bhattacharya, and K. J. L. Iyer,Mater. Sci. Lett. 10, 64 (1990).Google Scholar
  9. 9.
    A. S. Khanna, B. B. Jha, and Baldev Raj,Oxid. Met. 23, 159 (1985).Google Scholar
  10. 10.
    T. Wada and G. T. Eldis, ASTM STP 755, eds. ASTM, 343 (1982).Google Scholar
  11. 11.
    R. K. Dayal, N. Parvathavarthini, P. Rodriguez, J. B. Gnanamoorthy,Trans. Indian Inst. Met. 40, 74 (1987).Google Scholar
  12. 12.
    R. K. Singh Raman, A. S. Khanna, and J. B. Gnanamoorthy,J. Mater. Sci. Lett. 9, 353 (1990).Google Scholar
  13. 13.
    M. J. Graham, D. Caplan, R. J. Hussey,Can. Metall. Quart. 18, 283 (1979).Google Scholar
  14. 14.
    D. Caplan, G. I. Sproule, R. J. Hussey, and M. J. Graham,Oxid. Met. 12, 67 (1978).Google Scholar
  15. 15.
    R. Herchl, N. N. Khoi, T. Homma, and W. W. Smeltzer,Oxid. Met. 4, 35 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. K. Singh Raman
    • 1
  • A. S. Khanna
    • 1
  • R. K. Tiwari
    • 2
  • J. B. Gnanamoorthy
    • 1
  1. 1.Metallurgy DivisionIndira Gandhi Center for Atomic ResearchKalpakkamIndia
  2. 2.Regional Institute of TechnologyJamshedpur

Personalised recommendations